Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 525(4): 889-894, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171527

RESUMEN

A sophisticated and delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts regulates bone metabolism. Optineurin (OPTN) is a gene involved in primary open-angle glaucoma and amyotrophic lateral sclerosis. Although its function has been widely studied in ophthalmology and neurology, recent reports have shown its possible involvement in bone metabolism through negative regulation of osteoclast differentiation. However, little is known about the role of OPTN in osteoblast function. Here, we demonstrated that OPTN controls not only osteoclast but also osteoblast differentiation. Different parameters involved in osteoblastogenesis and osteoclastogenesis were assessed in Optn-/- mice. The results showed that osteoblasts from Optn-/- mice had impaired alkaline phosphatase activity, defective mineralized nodules, and inability to support osteoclast differentiation. Moreover, OPTN could bind to signal transducer and activator of transcription 1 (STAT1) and regulate runt-related transcription factor 2 (RUNX2) nuclear localization by modulating STAT1 levels in osteoblasts. These data suggest that OPTN is involved in bone metabolism not only by regulating osteoclast function but also by regulating osteoblast function by mediating RUNX2 nuclear translocation via STAT1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Osteoblastos/citología , Osteogénesis/fisiología , Factor de Transcripción STAT1/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Ratones Mutantes , Osteoclastos/citología , Osteoclastos/metabolismo
2.
J Hum Genet ; 65(10): 841-846, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32424308

RESUMEN

Aggressive periodontitis (AgP) occurs at an early age and causes rapid periodontal tissue destruction. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) encodes a protein with two caspase recruitment domains and eleven leucine-rich repeats. This protein is expressed mainly in peripheral blood leukocytes and is involved in immune response. NOD2 variants have been associated with increased susceptibility to Crohn's disease, and recently, NOD2 was reported as a causative gene in AgP. The present study aimed to identify potential NOD2 variants in an AgP cohort (a total of 101 patiens: 37 patients with positive family histories and 64 sporadic patients). In the familial group, six patients from two families had a reported heterozygous missense variant (c.C931T, p.R311W). Four patients in the sporadic group had a heterozygous missense variant (c.C1411T, p.R471C), with no reported association to the disease. Overall, two NOD2 variants, were identified in 10% of our AgP cohort. These variants were different from the major variants reported in Crohn's disease. More cases need to be investigated to elucidate the role of NOD2 variants in AgP pathology.


Asunto(s)
Periodontitis Agresiva/genética , Mutación Missense , Proteína Adaptadora de Señalización NOD2/genética , Adulto , Periodontitis Agresiva/diagnóstico por imagen , Periodontitis Agresiva/inmunología , Femenino , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Proteína Adaptadora de Señalización NOD2/química , Linaje , Dominios Proteicos
3.
Pathobiology ; 87(5): 277-290, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32937635

RESUMEN

OBJECTIVES: Scirrhous gastric cancer, which accounts for approximately 10% of all gastric cancers, often disseminates to the peritoneum, leading to intractable cases with poor prognosis. There is an urgent need for new treatment approaches for this difficult cancer. METHODS: We previously established an original cell line, HSC-60, from a scirrhous gastric cancer patient and isolated a peritoneal-metastatic cell line, 60As6, in nude mice following orthotopic inoculations. In the present study, we focused on the expression of long noncoding ribonucleic acid (RNA) (lncRNA) in the cell lines and investigated the mechanism on peritoneal dissemination. RESULTS: We demonstrated that an lncRNA, HOX transcript antisense RNA (HOTAIR), is expressed significantly more highly in 60As6 than HSC-60 cells. Then, using both HOTAIR knockdown and overexpression experiments, we showed that high-level expression of HOTAIR promotes epithelial-mesenchymal transition (EMT) in 60As6 cells. By luciferase assay, we found that HOTAIR directly targets and binds to miR-217, and that miR-217 directly binds to Zinc finger E-box-binding homeobox 1 (ZEB1). The knockdown of HOTAIR in 60As6 cells significantly reduced the invasion activity and peritoneal dissemination - and significantly prolonged the survival - in the orthotopic tumor mouse model. CONCLUSION: An EMT-associated pathway (the HOTAIR-miR-217-ZEB1 axis) appears to inhibit peritoneal dissemination and could lead to a novel therapeutic strategy against scirrhous gastric cancer in humans.


Asunto(s)
Adenocarcinoma Escirroso/genética , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , Peritoneo/patología , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Adenocarcinoma Escirroso/secundario , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Gástricas/secundario
4.
Pathobiology ; 85(4): 232-246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29847827

RESUMEN

OBJECTIVES: Scirrhous gastric cancers grow rapidly, and frequently invade the peritoneum. Such peritoneal dissemination properties markedly reduce patient survival. Thus, an effective means for inhibiting peritoneal dissemination is urgently required. METHODS: We previously established a cell line, HSC-58, from a scirrhous gastric cancer patient, and further successfully isolated a metastatic line, 58As9, in nude mice upon orthotopic inoculation. Using the lines, we examined the mechanism underlying peritoneal dissemination from the viewpoint of microRNA (miRNA) expression. RESULTS: miRNA array and qRT-PCR analysis showed that the expressions of epithelial-mesenchymal transition (EMT)-associated miRNAs such as miR-200c and miR-141 were significantly low in 58As9. Using 58As9 with stably overexpressing miR-200c, miR-141, or both, together with a luciferase reporter assay, we found that miR-200c targeted zinc finger E-box-binding homeobox 1 (ZEB1) and miR-141 targeted ZEB2. The overexpressed lines reversed the EMT status from mesenchymal to epithelial in 58As9, and significantly reduced the invasion activity and peritoneal dissemination for a significant prolongation of survival in the orthotopic tumor models in nude mice. CONCLUSIONS: EMT-associated miRNAs such as miR-200c and miR-141 and their target genes ZEB1/ZEB2 have good potential for antiperitoneal dissemination therapy in patients with scirrhous gastric cancers.


Asunto(s)
Adenocarcinoma Escirroso/patología , Transición Epitelial-Mesenquimal/genética , Invasividad Neoplásica/genética , Neoplasias Peritoneales/secundario , Neoplasias Gástricas/patología , Adenocarcinoma Escirroso/genética , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , MicroARNs/genética , Neoplasias Peritoneales/genética , Neoplasias Gástricas/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/biosíntesis , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/biosíntesis
6.
Indian J Med Res ; 145(6): 730-737, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29067974

RESUMEN

Coronary artery disease (CAD) is a multifactorial disease whose prevalence remains unabated especially in developing countries. Both lifestyle factors and genetic predisposition contribute to this disorder. Though notable achievements have been made in the medical, interventional and surgical management of CAD, the need for its prevention is more important. Among other modalities, this calls for defining evidence-based new biomarkers, which on their own or in combination with other known biomarkers may predict the risk of CAD to enable institution of appropriate preventive strategies. In the present communication, we have discussed the usefulness of shortening of telomeres as a potential biomarker of CAD. Clinical research evidence in favour of telomere shortening in CAD is well documented in different ethnic populations of the world. Establishing a well-standardized and accurate method of evaluating telomere length is essential before its routine use in preventive cardiology.


Asunto(s)
Biomarcadores , Enfermedad de la Arteria Coronaria/genética , Acortamiento del Telómero/genética , Telómero/genética , Enfermedad de la Arteria Coronaria/patología , Predisposición Genética a la Enfermedad , Humanos , Factores de Riesgo
8.
Nutr Cancer ; 65(4): 578-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23659450

RESUMEN

Cachexia, a negative prognostic factor, worsens a patient's quality of life. We established 2 novel cachexia models with the human stomach cancer cell line MKN-45, which was subcloned to produce potent cachexia-inducing cells by repeating the xenografts in immune-deficient mice. After subsequent xenografts, we isolated potent cachexia-inducing cells (MKN45cl85 and 85As2mLuc). Xenografts of MKN45cl85 cells in mice led to substantial weight loss and reduced adipose tissue and musculature volumes, whereas xenografts of 85As2mLuc cells resulted in highly metastatic and cachectic mice. Surgical removal of tumor tissues helped the mice regain body-weight in both mouse models. In vitro studies using these cells showed that isoflavones reduced their proliferation, implying that the isoflavones possess antiproliferative effects of these cancer cell lines. Isoflavone treatment on the models induced tumor cytostasis, attenuation of cachexia, and prolonged survival whereas discontinuation of the treatment resulted in progressive tumor growth and weight loss. The inhibitory effects of tumor growth and weight loss by isoflavones were graded as soy isoflavone aglycone AglyMax > daidzein > genistein. These results demonstrated that the 2 novel cachectic mouse models appear useful for analyzing the mechanism of cancer cachexia and monitoring the efficacy of anticachectic agents.


Asunto(s)
Caquexia/tratamiento farmacológico , Isoflavonas/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Animales , Caquexia/etiología , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Genisteína/farmacología , Humanos , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Gástricas/complicaciones , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Neoplasias Gástricas/cirugía , Ensayos Antitumor por Modelo de Xenoinjerto , beta-Glucanos/farmacología
9.
Cancer Med ; 12(16): 16972-16984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37501501

RESUMEN

BACKGROUND: Distinguishing between central nervous system lymphoma (CNSL) and CNS infectious and/or demyelinating diseases, although clinically important, is sometimes difficult even using imaging strategies and conventional cerebrospinal fluid (CSF) analyses. To determine whether detection of genetic mutations enables differentiation between these diseases and the early detection of CNSL, we performed mutational analysis using CSF liquid biopsy technique. METHODS: In this study, we extracted cell-free DNA from the CSF (CSF-cfDNA) of CNSL (N = 10), CNS infectious disease (N = 10), and demyelinating disease (N = 10) patients, and performed quantitative mutational analysis by droplet-digital PCR. Conventional analyses were also performed using peripheral blood and CSF to confirm the characteristics of each disease. RESULTS: Blood hemoglobin and albumin levels were significantly lower in CNSL than CNS infectious and demyelinating diseases, CSF cell counts were significantly higher in infectious diseases than CNSL and demyelinating diseases, and CSF-cfDNA concentrations were significantly higher in infectious diseases than CNSL and demyelinating diseases. Mutation analysis using CSF-cfDNA detected MYD88L265P and CD79Y196 mutations in 60% of CNSLs each, with either mutation detected in 80% of cases. Mutual existence of both mutations was identified in 40% of cases. These mutations were not detected in either infectious or demyelinating diseases, and the sensitivity and specificity of detecting either MYD88/CD79B mutations in CNSL were 80% and 100%, respectively. In the four cases biopsied, the median time from collecting CSF with the detected mutations to definitive diagnosis by conventional methods was 22.5 days (range, 18-93 days). CONCLUSIONS: These results suggest that mutation analysis using CSF-cfDNA might be useful for differentiating CNSL from CNS infectious/demyelinating diseases and for early detection of CNSL, even in cases where brain biopsy is difficult to perform.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central , Enfermedades Transmisibles , Enfermedades Desmielinizantes , Linfoma no Hodgkin , Humanos , Factor 88 de Diferenciación Mieloide , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Biopsia Líquida
10.
Cancer Sci ; 103(1): 34-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21999765

RESUMEN

The expression of BMI-1 is correlated with disease progression in cancer patients. We showed that ectopic expression of BMI-1 in B-cell lymphoma cell lines, HT and RL, conferred resistance to etoposide and oxaliplatin, known to enhance sensitivity by targeting the survivin gene, but not to irinotecan, which is not relevant to the downregulation of survivin expression. The expression of survivin was not only augmented in cells transduced with BMI-1, but persisted in the presence of etoposide in cells overexpressing BMI-1. By contrast, the mock-transduced cells succumbed in the medium with anticancer drugs, with an accompanying decrease in BMI-1 and survivin expression. BMI-1 overexpression stabilized survivin post-translationally without an accompanying rise in the mRNA, suggesting survivin as a potential target for BMI-1. Knockdown of either BMI-1 or survivin restored sensitivity to etoposide in the BMI-1-overexpressing lymphoma cells. An analysis of six patients with B-cell lymphoma showed that in the drug-resistant patients, levels of BMI-1 and survivin were maintained even after drug administration. However, downregulation of both BMI-1 and survivin expression was observed in the drug-sensitive patients. Therefore, BMI-1 might facilitate drug resistance in B-cell lymphoma cells through the regulation of survivin. BMI-1 could be an important prognostic marker as well as a future therapeutic target in the treatment of drug-resistant lymphomas.


Asunto(s)
Apoptosis/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Inhibidoras de la Apoptosis/química , Proteínas Inhibidoras de la Apoptosis/metabolismo , Linfoma de Células B/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/farmacología , Western Blotting , Camptotecina/análogos & derivados , Camptotecina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Etopósido/farmacología , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Irinotecán , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Compuestos Organoplatinos/farmacología , Oxaliplatino , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Survivin , Células Tumorales Cultivadas
11.
Biochem Biophys Res Commun ; 426(4): 571-7, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22982308

RESUMEN

Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, such as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.


Asunto(s)
Hidrocarburos Aromáticos/farmacología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Complejo Silenciador Inducido por ARN/metabolismo , Células HeLa , Humanos , Hidrocarburos Aromáticos/química , Luciferasas de Renilla/genética , ARN Interferente Pequeño/química
12.
Bioconjug Chem ; 23(2): 164-73, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22236254

RESUMEN

The development of Dicer-substrate small interfering RNAs (DsiRNAs) has been pursued in recent years because these molecules exhibit a much more potent gene-silencing effect than 21-nucleotide (nt) siRNAs. In the present study, we designed eight different types of amino-modified DsiRNAs and a palmitic acid-conjugated DsiRNA expected to result in improved biological properties of siRNAs, including their stability against nuclease degradation, membrane permeability, and RNAi efficacy. The DsiRNAs were modified with an amine at the 5'- and/or 3'-end of the sense and/or antisense strand. Dicer enzyme cleaved most of the amino-modified DsiRNAs to lead to the release of 21-nt siRNA; some of them, however, were not or partly cleaved. All amino-modified DsiRNAs exhibited strong resistance against nuclease degradations. Among the amino-modified DsiRNAs, the DsiRNA modified with an amine restricted at the 3'-end of the sense strand showed the most enhanced gene-silencing effect and maintained its potent gene suppression after one week of cell transfection against Renilla luciferase activity. For further improvement, palmitic acid was conjugated to DsiRNA at the 3'-end of the sense strand (C16-DsiRNA) to facilitate the membrane permeability and potent gene-silencing activity. The C16-DsiRNA showed enhanced membrane permeability to HeLa cells. The C16-DsiRNA exhibited extremely high inhibition of Renilla luciferase activity.


Asunto(s)
Aminas/química , Silenciador del Gen , Lípidos/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/metabolismo , Células Cultivadas , Células HeLa , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Ácido Palmítico/química , ARN Interferente Pequeño/sangre , Relación Estructura-Actividad
13.
Mol Pharm ; 9(5): 1374-83, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22494497

RESUMEN

Short interfering RNAs (siRNAs), used in RNA interference (RNAi) technology, are powerful tools for target-gene silencing in a sequence-specific manner. In this study, Dicer-substrate 27-nucleotide (nt) double-stranded RNAs (dsRNAs), which are known to have a highly potent RNAi effect, were conjugated with palmitic acid at the 5'-end of the sense strand to enhance intracellular delivery and RNAi efficacy. The palmitic acid-conjugated 27-nt dsRNAs (C16-ds27RNAs) were prepared by our simple synthesis strategy in good yield. The C16-ds27RNAs were cleaved by a Dicer enzyme, leading to the release of 21-nt siRNAs. The high level of stability in serum using C16-ds27RNAs was also confirmed. The C16-ds27RNAs showed enhanced RNAi potency targeted to both an exogenous luciferase and an endogenous vascular endothelial growth factor (VEGF) gene in the presence or absence of a transfection reagent, such as Lipofectamine 2000. In addition, the C16-ds27RNAs had a more potent gene-silencing activity than the other lipid-conjugated 21-nt siRNAs and 27-nt dsRNAs. The C16-ds27RNAs also exhibited significant membrane permeability. These results suggested that the C16-ds27RNAs will be useful for next-generation RNAi molecules that can address the problems of RNAi technology.


Asunto(s)
Silenciador del Gen/fisiología , Lípidos/química , ARN Bicatenario/química , ARN Bicatenario/genética , Factor A de Crecimiento Endotelial Vascular/genética , Línea Celular Tumoral , Células HeLa , Humanos , Ácido Palmítico/química , Interferencia de ARN/fisiología
14.
Biochem Biophys Rep ; 30: 101255, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35402738

RESUMEN

Methylation, the most common chemical modification of cellular components such as DNA, RNA, and proteins, impacts biological processes including transcription, RNA processing, and protein dynamics. Although abnormal expression of methyltransferase can lead to various diseases including cancers, little is known about the relationship between methyltransferase and cancers. Here we aimed to understand the role of methyltransferase in cancer metastasis. We found that elevated methyltransferase-like 9 (METTL9) is closely associated with the acquisition of metastatic activity in human scirrhous gastric cancers. The stable knockdown of METTL9 via an shRNA vector technique in our original metastatic cells from scirrhous gastric cancer patients significantly inhibited migration and invasion. In metastatic cells, METTL9 protein is predominantly localized in mitochondria, and the METTL9 knockdown significantly reduced mitochondrial Complex I activity. METTL9 can be a candidate of molecular targets to inhibit peritoneal dissemination of scirrhous gastric cancers. This report is the first to describe the relationship between METTL9 and cancer metastasis.

15.
Transl Oncol ; 25: 101521, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35998437

RESUMEN

BACKGROUND: T-cell receptor-engineered T-cell therapies have achieved promising response rates against synovial sarcoma in clinical trials, but their applicability is limited owing to the HLA matching requirement. Chimeric antigen receptor (CAR) can redirect primary T cells to tumor-associated antigens without requiring HLA matching. However, various obstacles, including the paucity of targetable antigens, must be addressed for synovial sarcoma. Ligands for natural killer (NK) cell-activating receptors are highly expressed by tumor cells. METHODS: The surface expression of ligands for NK cell-activating receptors in synovial sarcoma cell lines was analyzed. We analyzed RNA sequencing data deposited in a public database to evaluate NKp44-ligand expression. Primary T cells retrovirally transduced with CAR targeting NKp44 ligands were evaluated for their functions in synovial sarcoma cells. Alterations induced by various stimuli, including a histone deacetylase inhibitor, a hypomethylating agent, inflammatory cytokines, and ionizing radiation, in the expression levels of NKp44 ligands were investigated. RESULTS: Ligands for NKp44 and NKp30 were expressed in all cell lines. NKG2D ligands were barely expressed in a single cell line. None of the cell lines expressed NKp46 ligand. Primary synovial sarcoma cells expressed the mRNA of the truncated isoform of MLL5, a known cellular ligand for NKp44. NKp44-based CAR T cells specifically recognize synovial sarcoma cells, secrete interferon-γ, and exert suppressive effects on tumor cell growth. No stimulus altered the expression of NKp44 ligands. CONCLUSION: NKp44-based CAR T cells can redirect primary human T cells to synovial sarcoma cells. CAR-based cell therapies may be an option for treating synovial sarcomas.

17.
Mol Pharm ; 8(6): 2193-203, 2011 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-21985606

RESUMEN

Short interfering RNA (siRNA) technology is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with palmitic acid at the 5'-end of the sense strand (C16-siRNAs) using our novel synthesis strategy in order to improve the potency of siRNA. The C16-siRNAs exhibited enhanced nuclease stability. In addition, they showed potent gene-silencing efficacy against exogenous Renilla luciferase in HeLa cells compared with a nonmodified siRNA in the presence of Lipofectamine 2000. The C16-siRNAs also had a more potent inhibitory effect on Renilla luciferase activity than the other siRNA conjugated with lipids at the 5'-end and the 3'-end by palmitoyl conjugation. For further improvement, the gene silencing potency of the C16-siRNAs against the endogenous vascular endothelial growth factor (VEGF) gene in HeLa cells was investigated. In this investigation, the siRNAs were prepared not only with the normal RNA sequence but also coupled with an inverted thymidine (idT) at the 3'-ends of both the sense and antisense strands (siRNA-idT), including palmitic acid conjugations at the 5'-end of the sense strand, to improve stability. The C16-siRNA including idT modifications exhibited a significantly greater inhibitory effect on the VEGF gene in the presence of Lipofectamine 2000. It is noteworthy that C16-siRNA-idT demonstrated long-term gene-silencing efficacy of up to 5 days. Interestingly, the C16-siRNAs, including that with idT modifications, exhibited strong RNAi potency in the absence of any transfection reagents, although only at high concentrations. Both the C16-siRNAs and C16-siRNA-idT induced a high level of membrane permeability in HeLa cells. Our developed C16-siRNAs, particularly C16-siRNA-idT, are thus among the promising candidates for a new generation of modified siRNAs that can solve the many problems associated with siRNA technology.


Asunto(s)
Silenciador del Gen/efectos de los fármacos , Ácido Palmítico/farmacología , ARN Interferente Pequeño/farmacología , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Células HeLa , Humanos , Luciferasas de Renilla/efectos de los fármacos , Luciferasas de Renilla/genética , Microscopía Confocal , Datos de Secuencia Molecular , Estructura Molecular , Ácido Palmítico/metabolismo , ARN Interferente Pequeño/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Mol Cell Biochem ; 352(1-2): 293-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21387169

RESUMEN

CD38 is a transmembrane glycoprotein expressed in multiple cell types, including pancreatic ß cells. It can serve as an enzyme that catalyzes the metabolism of two different Ca(2+)-mobilizing compounds, cyclic adenosine diphosphoribose (cADPR) and nicotinic acid adenine dinucleotide phosphate. One of these metabolites, cADPR, is known to be involved in glucose-induced insulin secretion from pancreatic ß cells. Although the essential role of CD38 for endogenous cADPR synthesis has been established, the relationship between the proposed extracellular enzymatic activity of CD38 and the intracellular Ca(2+) modulation caused by the intracellular cADPR accumulation has not yet been fully explained. For a better understanding of the role of CD38 in the insulin secretion machinery, analysis of the intracellular localization of this molecule in pancreatic ß cells is essential. In an attempt to provide a method to probe the N-terminal and C-terminal of CD38 separately, we generated an insulin-secreting MIN6 murine pancreatic ß cell line expressing a human CD38 bearing an N-terminal FLAG epitope tag. We found a weak but consistent expression of the FLAG epitope outside of the cells, indicating the presence of a small amount of CD38 with cytoplasmic enzymatic activity. MIN6 cells transfected with human CD38 exhibited increased glucose-induced insulin release. In addition, anti-FLAG cross-linking further enhanced the insulin release, suggesting that the N-terminal of CD38 expressed on the cell surface functions as a receptor for an unknown ligand and triggers positive signals for insulin secretion.


Asunto(s)
ADP-Ribosil Ciclasa 1/metabolismo , ADP-Ribosa Cíclica/metabolismo , Insulina/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Electroporación , Citometría de Flujo , Secreción de Insulina , Ratones
19.
Transl Oncol ; 14(12): 101227, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34555727

RESUMEN

BACKGROUND: Synovial sarcoma is a rare malignant soft-tissue tumor that is prevalent in adolescents and young adults, and poor prognosis has been reported in patients with metastatic lesions. Chimeric antigen receptor (CAR) T-cell therapy is an emerging novel therapy for solid tumors; however, its application in synovial sarcoma has not yet been explored. METHODS: A novel human epidermal growth factor receptor 2 (HER2)-targeted CAR containing scFv-FRP5, CD8α hinge and transmembrane domains as well as 4-1BB costimulatory and CD3ζ signaling domains was developed. Three synovial sarcoma cell lines that expressed the fusion transcript SS18-SSX1/2/4 were used in the study. Cytokine secretion assay, cytotoxicity assay, and real-time cell analysis experiments were conducted to confirm the function of T cells transduced with the CAR gene. RESULTS: High cell-surface expression of HER2 was observed in all the cell lines. HER2-targeted/4-1BB-costimulated CAR T cells specifically recognized the synovial sarcoma cells, secreted interferon gamma and tumor necrosis factor alpha, and exerted cytotoxic effects in these cells. CONCLUSION: To the best of our knowledge, this is the first study to indicate that HER2-targeted CAR T cells are directly effective against molecularly defined synovial sarcoma cells. Furthermore, our findings might set the basis for developing improved CAR T cell-based therapies for chemo-refractory or relapsed synovial sarcoma.

20.
Int J Cancer ; 126(12): 2835-46, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19876922

RESUMEN

Human malignant pleural mesothelioma (HMPM) is an aggressive neoplasm that is highly resistant to conventional therapies. We established 3 HMPM cell lines (TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3) from Japanese patients; the first 2 from the primary and metastatic tumors of a patient with the epithelioid type of HMPM, and the third from a patient with biphasic characteristics of the tumor (epithelioid and sarcomatous phenotypes). The 3 cell lines resembled the original HMPMs in their morphological and biological features, including the genetic alterations such as lack of p16 expression and mutation of p53. Their tumorigenicity was determined in SCID mice by orthotopic implantation (20-46%). The tumorigenicity of the HMPM cell lines, which was relatively low, was enhanced by repeated subcultures and orthotopic implantations, and 3 competent tumorigenic sublines were produced (Me1Tu, Me2Tu and Me3Tu sublines from the TCC-MESO-1, TCC-MESO-2 and TCC-MESO-3 cell lines, respectively). The resultant HMPM sublines efficiently generated tumors in the SCID mice (100%) following orthotopic implantation. SCID mice implanted with the competent sublines, into one of which the luciferase gene was introduced, displayed quantitative fluctuation of the bioluminescence for the tumor volume in vivo. Oral administration of S-1, an anticancer agent, suppressed the proliferation of the luciferase gene-expressing Me1Tu subline in the mouse models in vivo, with a treated-to-control ratio of the mean tumor volume of 0.2. The orthotopic implantation mouse model proved to be useful for quantitative evaluation of the efficacy of novel anticancer drugs and also for studying the biology of HMPMs in vivo.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Modelos Animales de Enfermedad , Mesotelioma/tratamiento farmacológico , Ácido Oxónico/administración & dosificación , Fotones , Neoplasias Pleurales/tratamiento farmacológico , Tegafur/administración & dosificación , Administración Oral , Animales , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Citocinas/metabolismo , Combinación de Medicamentos , Humanos , Técnicas para Inmunoenzimas , Luciferasas/metabolismo , Masculino , Mesotelioma/metabolismo , Mesotelioma/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Neoplasias Pleurales/metabolismo , Neoplasias Pleurales/patología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA