Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7764): 261-264, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243365

RESUMEN

Until relatively recently, humans, similar to other animals, were habitually barefoot. Therefore, the soles of our feet were the only direct contact between the body and the ground when walking. There is indirect evidence that footwear such as sandals and moccasins were first invented within the past 40 thousand years1, the oldest recovered footwear dates to eight thousand years ago2 and inexpensive shoes with cushioned heels were not developed until the Industrial Revolution3. Because calluses-thickened and hardened areas of the epidermal layer of the skin-are the evolutionary solution to protecting the foot, we wondered whether they differ from shoes in maintaining tactile sensitivity during walking, especially at initial foot contact, to improve safety on surfaces that can be slippery, abrasive or otherwise injurious or uncomfortable. Here we show that, as expected, people from Kenya and the United States who frequently walk barefoot have thicker and harder calluses than those who typically use footwear. However, in contrast to shoes, callus thickness does not trade-off protection, measured as hardness and stiffness, for the ability to perceive tactile stimuli at frequencies experienced during walking. Additionally, unlike cushioned footwear, callus thickness does not affect how hard the feet strike the ground during walking, as indicated by impact forces. Along with providing protection and comfort at the cost of tactile sensitivity, cushioned footwear also lowers rates of loading at impact but increases force impulses, with unknown effects on the skeleton that merit future study.


Asunto(s)
Callosidades/fisiopatología , Pie/patología , Pie/fisiología , Dolor/fisiopatología , Tacto/fisiología , Caminata/fisiología , Adulto , Boston , Callosidades/patología , Femenino , Fricción/fisiología , Dureza/fisiología , Humanos , Kenia , Masculino , Persona de Mediana Edad , Estimulación Física , Presión , Zapatos , Fenómenos Fisiológicos de la Piel , Soporte de Peso/fisiología , Adulto Joven
2.
Horm Metab Res ; 54(9): 583-586, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35793708

RESUMEN

Diabetes mellitus is one of the most frequent diseases in the general population. Electrical stimulation is a treatment modality based on the transmission of electrical pulses into the body that has been widely used for improving wound healing and for managing acute and chronic pain. Here, we discuss recent advancements in electroceuticals and haptic/smart devices for quality of life and present in which patients and how electrical stimulation may prove to be useful for the treatment of diabetes-related complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Diabetes Mellitus/terapia , Estimulación Eléctrica , Humanos , Calidad de Vida , Textiles
3.
Sensors (Basel) ; 21(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808554

RESUMEN

Continuous monitoring of knee motion can provide deep insights into patients' rehabilitation status after knee injury and help to better identify their individual therapeutic needs. Potentiometers have been identified as one possible sensor type for continuous monitoring of knee motion. However, to verify their use in monitoring real-life environments, further research is needed. We aimed to validate a potentiometer-embedded knee brace to measure sagittal knee kinematics during various daily activities, as well as to assess its potential to continuously monitor knee motion. To this end, the sagittal knee motion of 32 healthy subjects was recorded simultaneously by an instrumented knee brace and an optoelectronic reference system during activities of daily living to assess the agreement between these two measurement systems. To evaluate the potentiometer's behavior during continuous monitoring, knee motion was continuously recorded in a subgroup (n = 9) who wore the knee brace over the course of a day. Our results show a strong agreement between the instrumented knee brace and reference system across all investigated activities as well as stable sensor behavior during continuous tracking. The presented potentiometer-based sensor system demonstrates strong potential as a device for measuring sagittal knee motion during daily activities as well as for continuous knee motion monitoring.


Asunto(s)
Actividades Cotidianas , Rodilla , Fenómenos Biomecánicos , Humanos , Articulación de la Rodilla , Rango del Movimiento Articular
4.
Sensors (Basel) ; 21(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34372251

RESUMEN

Foot rollover and the 'ride' feeling that occurs during heel-toe transition during running have been investigated mostly in laboratory settings due to the technical requirements of 'golden standard' measurement devices. Hence, the purpose of the current study was to investigate 'ride' and rollover with a heel cap-mounted inertial measurement unit (IMU) when running under field conditions to get realistic results. Twenty athletes ran on a 1 km outdoor track with five different shoe conditions, only differing in their midsole bending stiffness. The peak angular velocity (PAV) in the sagittal plane of the shoe was analyzed. The subjective evaluation of the 'ride' perception during heel-toe transition was rated on a visual analogue scale. The results revealed that PAV and 'ride' varied for the different shoes. The regression analysis showed that PAV has a significant impact on the 'ride' rating (R2 = 0.952; p = 0.005). The shoe with a medium midsole bending stiffness had the lowest value for PAV (845.6 deg/s) and the best rating of perceived 'ride' on average. Our results show that IMU can be used as a low-cost method to investigate the heel-toe transition during field-running. In addition, we found that midsole bending stiffness influenced PAV and the subjective feeling of 'ride'.


Asunto(s)
Carrera , Fenómenos Biomecánicos , Pie , Talón , Humanos , Zapatos
5.
J Therm Biol ; 93: 102718, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33077130

RESUMEN

Skin as the largest organ of the human body accomplishes many important functions, including thermoregulation. In this context, investigating cold (CDT) and warmth detection thresholds (WDT) constitutes an important research branch, and investigating thermal thresholds has a significant impact on the clothing and fabric textile industry. In this regard, not only the extremities, but also torso regions are of high relevance. However, only few examinations have conducted detailed mapping studies of the human torso. Additionally, some of these studies show certain methodological limitations. Furthermore, the issue of whether cutaneous thermal sensitivity is gender-dependent is still controversial. Therefore, the present study investigated the cutaneous thermal sensitivity (CDT, WDT) of 42 male and female young and healthy subjects. Measurements were taken at 11 anatomical regions. We found that gender plays an important role when investigating thermal thresholds: Females tended to be more sensitive than males. We also found considerable differences between the tested regions, even within the anterior torso, for example. We identified locations which were constantly sensitive (lower back), while others were consistently insensitive (e.g. scapula). We also detected greater data variability for males compared to females, and for WDT compared to CDT. Furthermore, mainly for WDT, we found a proximal-to-distal increase of thermal torso and upper arm sensitivity. In line with previous investigations, our subjects were more sensitive to cold than to warmth. The findings of this study have important implications. First, our data may complement basic research, e.g. in terms of reference data of body regional maps. Second, our data provides important insights that could be leveraged in the textile industry, and also used to optimize current broadly applicable test methods and tools, like thermal manikins and thermophysiological models.


Asunto(s)
Umbral Sensorial , Sensación Térmica , Torso/fisiología , Adulto , Regulación de la Temperatura Corporal , Frío , Femenino , Calor , Humanos , Masculino , Maniquíes , Factores Sexuales , Temperatura Cutánea
6.
Sensors (Basel) ; 18(1)2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29303986

RESUMEN

Previous studies have used accelerometers with various operating ranges (ORs) when measuring biomechanical parameters. However, it is still unclear whether ORs influence the accuracy of running parameters, and whether the different stiffnesses of footwear midsoles influence this accuracy. The purpose of the present study was to systematically investigate the influence of OR on the accuracy of stride length, running velocity, and on peak tibial acceleration. Twenty-one recreational heel strike runners ran on a 15-m indoor track at self-selected running speeds in three footwear conditions (low to high midsole stiffness). Runners were equipped with an inertial measurement unit (IMU) affixed to the heel cup of the right shoe and with a uniaxial accelerometer at the right tibia. Accelerometers (at the tibia and included in the IMU) with a high OR of ±70 g were used as the reference and the data were cut at ±32, ±16, and at ±8 g in post-processing, before calculating parameters. The results show that the OR influenced the outcomes of all investigated parameters, which were not influenced by tested footwear conditions. The lower ORs were associated with an underestimation error for all biomechanical parameters, which increased noticeably with a decreasing OR. It can be concluded that accelerometers with a minimum OR of ±32 g should be used to avoid inaccurate measurements.

7.
BMC Neurosci ; 17(1): 41, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27357844

RESUMEN

BACKGROUND: Anticipatory and compensatory balance responses are used by the central nervous system (CNS) to preserve balance, hence they significantly contribute to the understanding of physiological mechanisms of postural control. It is well established that various sensory systems contribute to the regulation of balance. However, it is still unclear which role each individual sensory system (e.g. plantar mechanoreceptors) plays in balance regulation. This becomes also evident in various patient populations, for instance in diabetics with reduced plantar sensitivity. To investigate these sensory mechanisms, approaches like hypothermia to deliberately reduce plantar afferent input have been applied. But there are some limitations regarding hypothermic procedures in previous studies: Not only plantar aspects of the feet might be affected and maintaining the hypothermic effect during data collection. Therefore, the aim of the present study was to induce a permanent and controlled plantar hypothermia and to examine its effects on anticipatory and compensatory balance responses. We hypothesized deteriorations in anticipatory and compensatory balance responses as increased center of pressure excursions (COP) and electromyographic activity (EMG) in response to the hypothermic plantar procedure. 52 healthy and young subjects (23.6 ± 3.0 years) performed balance tests (unexpected perturbations). Subjects' foot soles were exposed to three temperatures while standing upright: 25, 12 and 0 °C. COP and EMG were analyzed during two intervals of anticipatory and one interval of compensatory balance responses (intervals 0, 1 and 2, respectively). RESULTS: Similar plantar temperatures confirmed the successful implementation of the thermal platform. No significant COP and EMG differences were found for the anticipatory responses (intervals 0 and 1) under the hyperthermia procedure. Parameters in interval 2 showed generally decreased values in response to cooling. CONCLUSION: No changes in anticipatory responses were found possibly due to sensory compensation processes of other intact afferents. Decreased compensatory responses may be interpreted as the additional balance threat, creating a more cautious behavior causing the CNS to generate a kind of over-compensatory behavior. Contrary to the expectations, there were different anticipatory and compensatory responses after reduced plantar inputs, thereby, revealing alterations in the organization of CNS inputs and outputs according to different task difficulties.


Asunto(s)
Anticipación Psicológica/fisiología , Pie/fisiología , Actividad Motora/fisiología , Equilibrio Postural/fisiología , Fenómenos Fisiológicos de la Piel , Sistema Nervioso Central/fisiología , Frío , Electromiografía , Femenino , Humanos , Masculino , Movimiento/fisiología , Presión , Adulto Joven
8.
Muscle Nerve ; 53(6): 965-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27113729

RESUMEN

INTRODUCTION: This study investigated whether a controlled reduction of foot sole temperature affects the Achilles tendon stretch reflex and plantar flexion. Methods Five stretch reflexes in 52 healthy subjects were evoked by Achilles tendon taps. Short latency responses of 3 muscles of the lower limb and maximal force of plantar flexion were analyzed. Foot sole hypothermia was induced by a thermal platform at various foot temperature conditions: Stage I (25°C), Stage II (12°C), Stage IIIa (0°C), and Stage IIIb (0°C). Results Reduction of plantar cutaneous inputs resulted in a decrease in amplitude of medial gastrocnemius and soleus as well as delays in time to maximal force of plantar flexion. Medial gastrocnemius, lateral gastrocnemius, and soleus were affected differently by induced cooling. No inhibition effects in reflexes were observed at 12°C. Conclusions The results suggest that input on the plantar foot sole participates complementarily in the Achilles stretch reflex Muscle Nerve, 2015. Muscle Nerve 53: 965-971, 2016.


Asunto(s)
Tendón Calcáneo/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Pie/inervación , Piel/inervación , Adulto , Frío , Estimulación Eléctrica , Electromiografía , Femenino , Voluntarios Sanos , Humanos , Masculino , Estimulación Física , Temperatura Cutánea/fisiología , Adulto Joven
9.
Surg Radiol Anat ; 38(1): 97-106, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26251021

RESUMEN

PURPOSE: Muscle volumes are of crucial interest when attempting to analyze individual physical performance and disease- or age-related alterations in muscle morphology. However, very little reference data are available in the literature on pelvis and lower extremity muscle volumes originating from healthy and young individuals. Furthermore, it is of interest if representative muscle volumes, covering large anatomical regions, can be obtained using magnetic resonance imaging (MRI) in a setting similar to the clinical routine. Our objective was therefore to provide encompassing, bilateral, 3-T MRI-based datasets on muscle volumes of the pelvis and the lower limb muscles. METHODS: T1-weighted 3-T MRI records were obtained bilaterally from six young and healthy participants. Three-dimensional volumes were compiled from 28 muscles and muscle groups of each participant before the muscle volumes were computed. RESULTS: Muscle volumes were obtained from 28 muscles and muscle groups of the pelvis and lower extremity. Volumes were larger in male than in female participants. Volumes of the dominant and non-dominant sides were similar in both genders. The obtained results were in line with volumetric data obtained from smaller anatomical areas, thus extending the available datasets. CONCLUSIONS: This study provides an encompassing and feasible approach to obtain data on the muscle volumes of pelvic and limb muscles of healthy, young, and physically active individuals. The respective data form a basis to determine effects of therapeutic approaches, progression of diseases, or technical applications like automated segmentation algorithms applied to different populations.


Asunto(s)
Músculo Esquelético/anatomía & histología , Adulto , Estudios de Factibilidad , Femenino , Humanos , Extremidad Inferior/anatomía & histología , Extremidad Inferior/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Músculo Esquelético/diagnóstico por imagen , Tamaño de los Órganos , Pelvis/anatomía & histología , Pelvis/diagnóstico por imagen , Estudios Prospectivos , Valores de Referencia , Adulto Joven
10.
Bioengineering (Basel) ; 11(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38671825

RESUMEN

Anterior cruciate ligament reconstruction (ACLR) may affect movement even years after surgery. The purpose of this study was to determine possible interlimb asymmetries due to ACLR when running on a treadmill and in field conditions, with the aim of contributing to the establishment of objective movement assessment in real-world settings; moreover, we aimed to gain knowledge on recovered ACLR as a biomechanical risk factor. Eight subjects with a history of unilateral ACLR 5.4 ± 2.8 years after surgery and eight healthy subjects ran 1 km on a treadmill and 1 km on a concrete track. The ground contact time and triaxial peak tibial accelerations were recorded using inertial measurement units. Interlimb differences within subjects were tested and compared between conditions. There were no significant differences between limbs in the ACLR subjects or in healthy runners for any of the chosen parameters on both running surfaces. However, peak tibial accelerations were higher during field running (p-values < 0.01; Cohen's d effect sizes > 0.8), independent of health status. To minimize limb loading due to higher impacts during field running, this should be considered when choosing a running surface, especially in rehabilitation or when running with a minor injury or health issues.

11.
Brain Sci ; 13(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36979264

RESUMEN

BACKGROUND: Postural instability is one of the most restricting motor symptoms for patients with Parkinson's disease (PD). While medication therapy only shows minor effects, it is still unclear whether medication in conjunction with deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves postural stability. Hence, the aim of this study was to investigate whether PD patients treated with medication in conjunction with STN-DBS have superior postural control compared to patients treated with medication alone. METHODS: Three study groups were tested: PD patients on medication (PD-MED), PD patients on medication and on STN-DBS (PD-MED-DBS), and healthy elderly subjects (HS) as a reference. Postural performance, including anticipatory postural adjustments (APA) prior to perturbation onset and compensatory postural responses (CPR) following multidirectional horizontal perturbations, was analyzed using force plate and electromyography data. RESULTS: Regardless of the treatment condition, both patient groups showed inadequate APA and CPR with early and pronounced antagonistic muscle co-contractions compared to healthy elderly subjects. Comparing the treatment conditions, study group PD-MED-DBS only showed minor advantages over group PD-MED. In particular, group PD-MED-DBS showed faster postural reflexes and tended to have more physiological co-contraction ratios. CONCLUSION: medication in conjunction with STN-DBS may have positive effects on the timing and amplitude of postural control.

12.
Brain Sci ; 13(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38137129

RESUMEN

OBJECTIVE: To investigate whether impaired plantar cutaneous vibration perception contributes to axial motor symptoms in Parkinson's disease (PD) and whether anti-parkinsonian medication and subthalamic nucleus deep brain stimulation (STN-DBS) show different effects. METHODS: Three groups were evaluated: PD patients in the medication "on" state (PD-MED), PD patients in the medication "on" state and additionally "on" STN-DBS (PD-MED-DBS), as well as healthy subjects (HS) as reference. Motor performance was analyzed using a pressure distribution platform. Plantar cutaneous vibration perception thresholds (VPT) were investigated using a customized vibration exciter at 30 Hz. RESULTS: Motor performance of PD-MED and PD-MED-DBS was characterized by greater postural sway, smaller limits of stability ranges, and slower gait due to shorter strides, fewer steps per minute, and broader stride widths compared to HS. Comparing patient groups, PD-MED-DBS showed better overall motor performance than PD-MED, particularly for the functional limits of stability and gait. VPTs were significantly higher for PD-MED compared to those of HS, which suggests impaired plantar cutaneous vibration perception in PD. However, PD-MED-DBS showed less impaired cutaneous vibration perception than PD-MED. CONCLUSIONS: PD patients suffer from poor motor performance compared to healthy subjects. Anti-parkinsonian medication in tandem with STN-DBS seems to be superior for normalizing axial motor symptoms compared to medication alone. Plantar cutaneous vibration perception is impaired in PD patients, whereas anti-parkinsonian medication together with STN-DBS is superior for normalizing tactile cutaneous perception compared to medication alone. Consequently, based on our results and the findings of the literature, impaired plantar cutaneous vibration perception might contribute to axial motor symptoms in PD.

13.
PeerJ ; 11: e15952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692116

RESUMEN

Background: Skin is the largest organ of the human body and fulfills many important functions, like detecting mechanical stimuli. Skin can be divided into glabrous (non-hairy) and hairy skin. These two skin types differ with regard to their mechanical properties and in the distribution of mechanoreceptors. Although many investigations focus on glabrous skin, hairy skin still plays a fundamental role in various activities, e.g., with regard to the perception of pleasantness or for developing wearable vibrotactile devices for pattern recognition in persons with disabilities. Unfortunately, investigations on influencing factors, like vertical contactor force, are scarce for hairy skin. Similarly, it would also be interesting to investigate whether regional vibratory sensitivity differences are present across the human torso. Hence, this study investigated the effects of vertical contactor forces and different anatomical locations on vibration perception. Four anatomical torso regions were studied. Based on findings in glabrous skin, we generally hypothesized improved vibration perception with increasing contactor forces and regional sensitivity differences between the anatomical locations. Methods: Forty young and healthy individuals participated (23.0 ± 2.0 yrs), and vibration perception thresholds (VPTs) were determined at 30 Hz for three vertical force levels (0.6, 2.4, and 4.8 N) at four torso locations (sternum, deltoid/shoulder, lower back, middle lateral torso side). Results: Higher contactor forces resulted in lower VPTs corresponding to improved vibration perception, regardless of anatomical location. In addition, the sternum region was more sensitive than the remaining three regions, regardless of force level. The reasons for these findings may be a varying number and activation pattern of afferents activated under the different conditions. The findings of this study complement the understanding of vibrotactile sensitivity in hairy skin and may offer implications when developing vibrotactile devices or clothing/textiles, for example.


Asunto(s)
Piel , Vibración , Humanos , Dorso , Torso , Percepción
14.
Biomedicines ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009427

RESUMEN

Subliminal electrical noise (SEN) enhances sensitivity in healthy individuals of various ages. Diabetes and its neurodegenerative profile, such as marked decreases in foot sensitivity, highlights the potential benefits of SEN in such populations. Accordingly, this study aimed to investigate the effect of SEN on vibration sensitivity in diabetes. Vibration perception thresholds (VPT) and corresponding VPT variations (coefficient of variation, CoV) of two experimental groups with diabetes mellitus were determined using a customized vibration exciter (30 and 200 Hz). Plantar measurements were taken at the metatarsal area with and without SEN stimulation. Wilcoxon signed-rank and t tests were used to test for differences in VPT and CoV within frequencies, between the conditions with and without SEN. We found no statistically significant effects of SEN on VPT and CoV (p > 0.05). CoV showed descriptively lower mean variations of 4 and 7% for VPT in experiment 1. SEN did not demonstrate improvements in VPT in diabetic individuals. Interestingly, taking into account the most severely affected (neuropathy severity) individuals, SEN seems to positively influence vibratory perception. However, the descriptively reduced variations in experiment 1 indicate that participants felt more consistently. It is possible that the effect of SEN on thick, myelinated Aß-fibers is only marginally present.

15.
Physiol Rep ; 10(20): e15479, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36259120

RESUMEN

In humans, plantar cutaneous mechanoreceptors provide critical input signals for postural control during walking and running. Because these receptors are located within the dermis, the mechanical properties of the overlying epidermis likely affect the transmission of external stimuli. Epidermal layers are highly adaptable and can form hard and thick protective calluses, but their effects on plantar sensitivity are currently disputed. Some research has shown no effect of epidermal properties on sensitivity to vibrations, whereas other research suggests that vibration and touch sensitivity diminishes with a thicker and harder epidermis. To address this conflict, we conducted an intervention study where 26 participants underwent a callus abrasion while an age-matched control group (n = 16) received no treatment. Skin hardness and thickness as well as vibration perception thresholds and touch sensitivity thresholds were collected before and after the intervention. The Callus abrasion significantly decreased skin properties. The intervention group exhibited no change in vibration sensitivity but had significantly better touch sensitivity. We argue that touch sensitivity was impeded by calluses because hard skin disperses the monofilament's standardized pressure used to stimulate the mechanoreceptors over a larger area, decreasing indentation depth and therefore stimulus intensity. However, vibration sensitivity was unaffected because the vibrating probe was adjusted to reach specific indentation depths, and thus stimulus intensity was not affected by skin properties. Since objects underfoot necessarily indent plantar skin during weight-bearing, calluses should not affect mechanosensation during standing, walking, or running.


Asunto(s)
Pie , Tacto , Humanos , Mecanorreceptores , Piel , Vibración/efectos adversos
16.
J Clin Med ; 10(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34300249

RESUMEN

Determining vibration perception thresholds (VPT) is a central concern of clinical research and science to assess the somatosensory capacity of humans. The response of different mechanoreceptors to an increasing contact force has rarely been studied. We hypothesize that increasing contact force leads to a decrease in VPTs of fast-adapting mechanoreceptors in the sole of the human foot. VPTs of 10 healthy subjects were measured at 30 Hz and 200 Hz at the heel of the right foot using a vibration exciter. Contact forces were adjusted precisely between 0.3 N-9.6 N through an integrated force sensor. Significant main effects were found for frequency and contact force. Furthermore, there was a significant interaction for frequency and contact force, meaning that the influence of an increasing contact force was more obvious for the 30 Hz condition. We presume that the principles of contrast enhancement and spatial summation are valid in Meissner and Pacinian corpuscles, respectively. In addition to spatial summation, we presume an effect on Pacinian corpuscles due to their presence in the periosteum or interosseous membrane.

17.
Front Sports Act Living ; 3: 760533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805980

RESUMEN

In modern Western societies, sedentary behavior has become a growing health concern. There is increasing evidence that prolonged sitting periods can be associated with musculoskeletal disorders. While it is generally recognized that back muscle activity is low during chair-sitting, little is known about the consequences of minor to no muscle activity on muscle stiffness. Muscle stiffness may play an important role in musculoskeletal health. This study investigated the effects of regular muscle contractions on muscle stiffness in a controlled experiment in which participants sat for 4.5 h. Neuromuscular electrical stimulation in the lumbar region of the back was applied to trigger regular muscle contractions. Using stiffness measurements and continuous motion capturing, we found that prolonged sitting periods without regular muscle contractions significantly increased back muscle stiffness. Moreover, we were able to show that regular muscle contractions can prevent those effects. Our results highlight the importance of consistent muscle activity throughout the day and may help explain why prolonged periods of chair-sitting increase the susceptibility to common pathological conditions such as low back pain.

18.
Heliyon ; 7(1): e05811, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33458441

RESUMEN

OBJECTIVE: To investigate whether impaired plantar cutaneous vibration perception contributes to postural disturbance in idiopathic normal pressure hydrocephalus (iNPH). METHODS: Three different groups were tested: iNPH-patients (iNPH), iNPH-patients after surgical shunt therapy (iNPH shunt), and healthy subjects (HS). Postural performance was quantified during quiescent stance on a pressure distribution platform. Vibration perception threshold (VPT) was measured using a modified vibration exciter to apply stimuli to the plantar foot. RESULTS: Regarding postural performance, iNPH showed significantly higher values for all investigated center of pressure (COP)-parameters compared to HS, which suggests impaired postural control. Shunted patients presented a tendency towards better postural control in contrast to non-shunted patients. VPTs did not differ significantly between all investigated groups, which suggests comparable plantar cutaneous vibration perception. CONCLUSION: Patients with iNPH suffer from poor postural stability, whereas shunting tends to affect postural performance positively. Plantar cutaneous vibration perception seems to be comparable between all investigated study groups. Consequently, postural disturbance in iNPH cannot clearly be ascribed to defective plantar cutaneous input.

19.
J Clin Med ; 10(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201094

RESUMEN

Mechanical skin properties (MSPs) and vibration perception thresholds (VPTs) show no relationship in healthy subjects. Similar results were expected when comparing MSP and VPT in individuals with diabetes mellitus (DM) and with diabetic (peripheral-)neuropathy (DPN). A healthy control group (33 CG), 20 DM and 13 DPN participated in this cross-sectional study. DM and DPN were classified by using a fuzzy decision support system. VPTs (in µm) were measured with a modified vibration exciter at two different frequencies (30 and 200 Hz) and locations (heel, first metatarsal head). Skin hardness (durometer readings) and thickness (ultrasound) were measured at the same locations. DPN showed the highest VPTs compared to DM and CG at both frequencies and locations. Skin was harder in DPN compared to CG (heel). No differences were observed in skin thickness. VPTs at 30 and 200 Hz correlated negatively with skin hardness for DPN and with skin thickness for DM, respectively. This means, the harder or thicker the skin, the better the perception of 30 or 200 Hz vibrations. Changes in MSP may compensate the loss of sensitivity up to a certain progression of the disease. However, the influence seems rather small when considering other parameters, such as age.

20.
PeerJ ; 9: e11221, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026347

RESUMEN

BACKGROUND: Studies demonstrated that the older adults can be more susceptible to balance instability after acute visual manipulation. There are different manipulation approaches used to investigate the importance of visual inputs on balance, e.g., eyes closed and blackout glasses. However, there is evidence that eyes open versus eyes closed results in a different organization of human brain functional networks. It is, however, unclear how different visual manipulations affect balance, and whether such effects differ between young and elderly persons. Therefore, this study aimed to determine whether different visual manipulation approaches affect quasi-static and dynamic balance responses differently, and to investigate whether balance responses of young and older adults are affected differently by these various visual conditions. METHODS: Thirty-six healthy participants (20 young and 16 older adults) performed balance tests (quasi-static and unexpected perturbations) under four visual conditions: Eyes Open, Eyes Closed, Blackout Glasses, and Dark Room. Center of pressure (CoP) and muscle activation (EMG) were quantified. RESULTS: As expected, visual deprivation resulted in larger CoP excursions and higher muscle activations during balance tests for all participants. Surprisingly, the visual manipulation approach did not influence balance control in either group. Furthermore, quasi-static and dynamic balance control did not differ between young or older adults. The visual system plays an important role in balance control, however, similarly for both young and older adults. Different visual deprivation approaches did not influence balance results, meaning our results are comparable between participants of different ages. Further studies should investigate whether a critical illumination level may elicit different postural responses between young and older adults.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA