Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 174(6): 1507-1521.e16, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100183

RESUMEN

The hetero-oligomeric chaperonin of eukarya, TRiC, is required to fold the cytoskeletal protein actin. The simpler bacterial chaperonin system, GroEL/GroES, is unable to mediate actin folding. Here, we use spectroscopic and structural techniques to determine how TRiC promotes the conformational progression of actin to the native state. We find that actin fails to fold spontaneously even in the absence of aggregation but populates a kinetically trapped, conformationally dynamic state. Binding of this frustrated intermediate to TRiC specifies an extended topology of actin with native-like secondary structure. In contrast, GroEL stabilizes bound actin in an unfolded state. ATP binding to TRiC effects an asymmetric conformational change in the chaperonin ring. This step induces the partial release of actin, priming it for folding upon complete release into the chaperonin cavity, mediated by ATP hydrolysis. Our results reveal how the unique features of TRiC direct the folding pathway of an obligate eukaryotic substrate.


Asunto(s)
Actinas/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/metabolismo , Actinas/química , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Chaperonina 10/química , Chaperonina 60/química , Microscopía por Crioelectrón , Desoxirribonucleasa I/química , Desoxirribonucleasa I/metabolismo , Medición de Intercambio de Deuterio , Humanos , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
2.
Cell ; 172(3): 605-617.e11, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29336887

RESUMEN

The bacterial chaperonin GroEL and its cofactor, GroES, form a nano-cage for a single molecule of substrate protein (SP) to fold in isolation. GroEL and GroES undergo an ATP-regulated interaction cycle to close and open the folding cage. GroEL consists of two heptameric rings stacked back to back. Here, we show that GroEL undergoes transient ring separation, resulting in ring exchange between complexes. Ring separation occurs upon ATP-binding to the trans ring of the asymmetric GroEL:7ADP:GroES complex in the presence or absence of SP and is a consequence of inter-ring negative allostery. We find that a GroEL mutant unable to perform ring separation is folding active but populates symmetric GroEL:GroES2 complexes, where both GroEL rings function simultaneously rather than sequentially. As a consequence, SP binding and release from the folding chamber is inefficient, and E. coli growth is impaired. We suggest that transient ring separation is an integral part of the chaperonin mechanism.


Asunto(s)
Chaperonina 60/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Mutación , Unión Proteica
3.
Mol Cell ; 81(1): 49-66.e8, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33242393

RESUMEN

Breathing depends on pulmonary surfactant, a mixture of phospholipids and proteins, secreted by alveolar type II cells. Surfactant requires lamellar bodies (LBs), organelles containing densely packed concentric membrane layers, for storage and secretion. LB biogenesis remains mysterious but requires surfactant protein B (SP-B), which is synthesized as a precursor (pre-proSP-B) that is cleaved during trafficking into three related proteins. Here, we elucidate the functions and cooperation of these proteins in LB formation. We show that the N-terminal domain of proSP-B is a phospholipid-binding and -transfer protein whose activities are required for proSP-B export from the endoplasmic reticulum (ER) and sorting to LBs, the conversion of proSP-B into lipoprotein particles, and neonatal viability in mice. The C-terminal domain facilitates ER export of proSP-B. The mature middle domain, generated after proteolytic cleavage of proSP-B, generates the striking membrane layers characteristic of LBs. Together, our results lead to a mechanistic model of LB biogenesis.


Asunto(s)
Retículo Endoplásmico/metabolismo , Lipoproteínas/metabolismo , Complejos Multiproteicos/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Lipoproteínas/química , Ratones , Complejos Multiproteicos/química , Dominios Proteicos , Proteína B Asociada a Surfactante Pulmonar/química
4.
Mol Cell ; 67(5): 744-756.e6, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28803776

RESUMEN

How AAA+ chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA+ protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Rhodobacter sphaeroides/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Activador de Tejido Plasminógeno/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Reactivos de Enlaces Cruzados/química , Medición de Intercambio de Deuterio , Estabilidad de Enzimas , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Subunidades de Proteína , Rhodobacter sphaeroides/genética , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Relación Estructura-Actividad , Factores de Tiempo , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/genética
5.
Comput Struct Biotechnol J ; 20: 5420-5429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212536

RESUMEN

For the development of concentrated monoclonal antibody formulations for subcutaneous administration, the main challenge is the high viscosity of the solutions. To compensate for this, viscosity reducing agents are commonly used as excipients. Here, we applied two computational chemistry approaches to discover new viscosity-reducing agents: fingerprint similarity searching, and physicochemical property filtering. In total, 94 compounds were selected and experimentally evaluated on two model monoclonal antibodies, which led to the discovery of 44 new viscosity-reducing agents. Analysis of the results showed that using a simple filter that selects only compounds with three or more charge groups is a good 'rule of thumb' for selecting potential viscosity-reducing agents for two model monoclonal antibody formulations.

6.
J Mol Biol ; 427(12): 2244-55, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25912285

RESUMEN

The chaperonin GroEL, a cylindrical complex consisting of two stacked heptameric rings, and its lid-like cofactor GroES form a nano-cage in which a single polypeptide chain is transiently enclosed and allowed to fold unimpaired by aggregation. GroEL and GroES undergo an ATP-regulated interaction cycle that serves to close and open the folding cage. Recent reports suggest that the presence of non-native substrate protein alters the GroEL/ES reaction by shifting it from asymmetric to symmetric complexes. In the asymmetric reaction mode, only one ring of GroEL is GroES bound and the two rings function sequentially, coupled by negative allostery. In the symmetric mode, both GroEL rings are GroES bound and are folding active simultaneously. Here, we find that the results of assays based on fluorescence resonance energy transfer recently used to quantify symmetric complexes depend strongly on the fluorophore pair used. We therefore developed a novel assay based on fluorescence cross-correlation spectroscopy to accurately measure GroEL:GroES stoichiometry. This assay avoids fluorophore labeling of GroEL and the use of GroEL cysteine mutants. Our results show that symmetric GroEL:GroES2 complexes are substantially populated only in the presence of non-foldable model proteins, such as α-lactalbumin and α-casein, which "over-stimulate" the GroEL ATPase and uncouple the negative GroEL inter-ring allostery. In contrast, asymmetric complexes are dominant both in the absence of substrate and in the presence of foldable substrate proteins. Moreover, uncoupling of the GroEL rings and formation of symmetric GroEL:GroES2 complexes is suppressed at physiological ATP:ADP concentration. We conclude that the asymmetric GroEL:GroES complex represents the main folding active form of the chaperonin.


Asunto(s)
Chaperonina 10/química , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Pliegue de Proteína , Multimerización de Proteína , Adenosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Espectrometría de Fluorescencia/métodos
7.
Nat Struct Mol Biol ; 22(9): 720-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237510

RESUMEN

Biogenesis of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits, requires assembly chaperones. Here we analyzed the role of Rubisco accumulation factor1 (Raf1), a dimer of ∼40-kDa subunits. We find that Raf1 from Synechococcus elongatus acts downstream of chaperonin-assisted RbcL folding by stabilizing RbcL antiparallel dimers for assembly into RbcL8 complexes with four Raf1 dimers bound. Raf1 displacement by RbcS results in holoenzyme formation. Crystal structures show that Raf1 from Arabidopsis thaliana consists of a ß-sheet dimerization domain and a flexibly linked α-helical domain. Chemical cross-linking and EM reconstruction indicate that the ß-domains bind along the equator of each RbcL2 unit, and the α-helical domains embrace the top and bottom edges of RbcL2. Raf1 fulfills a role similar to that of the assembly chaperone RbcX, thus suggesting that functionally redundant factors ensure efficient Rubisco biogenesis.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/química , Arabidopsis/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Peso Molecular , Conformación Proteica , Multimerización de Proteína , Synechococcus/enzimología
8.
J Mol Biol ; 426(15): 2739-54, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-24816391

RESUMEN

The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetics by modulating the folding energy landscape. Here we developed single-molecule approaches to distinguish between passive and active chaperonin mechanisms. Using low protein concentrations (100pM) to exclude aggregation, we measured the spontaneous and GroEL/ES-assisted folding of double-mutant maltose binding protein (DM-MBP) by single-pair fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We find that GroEL/ES accelerates folding of DM-MBP up to 8-fold over the spontaneous folding rate. Accelerated folding is achieved by encapsulation of folding intermediate in the GroEL/ES cage, independent of repetitive cycles of protein binding and release from GroEL. Moreover, photoinduced electron transfer experiments provided direct physical evidence that the confining environment of the chaperonin restricts polypeptide chain dynamics. This effect is mediated by the net-negatively charged wall of the GroEL/ES cavity, as shown using the GroEL mutant EL(KKK2) in which the net-negative charge is removed. EL(KKK2)/ES functions as a passive cage in which folding occurs at the slow spontaneous rate. Taken together our findings suggest that protein encapsulation can accelerate folding by entropically destabilizing folding intermediates, in strong support of an active chaperonin mechanism in the folding of some proteins. Accelerated folding is biologically significant as it adjusts folding rates relative to the speed of protein synthesis.


Asunto(s)
Chaperonina 10/química , Chaperonina 60/química , Escherichia coli/enzimología , Pliegue de Proteína , Adenosina Trifosfatasas/metabolismo , Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/genética , Transferencia Resonante de Energía de Fluorescencia , Cinética , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Microscopía Fluorescente , Mutación/genética , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA