Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(4): 513-28, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21565611

RESUMEN

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Asunto(s)
Enfermedades Renales Quísticas/genética , Proteínas de la Membrana/genética , Transducción de Señal , Animales , Ataxina-10 , Centrosoma/metabolismo , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Encefalocele/genética , Proteínas Hedgehog/metabolismo , Humanos , Enfermedades Renales Quísticas/metabolismo , Ratones , Células 3T3 NIH , Proteínas del Tejido Nervioso/genética , Enfermedades Renales Poliquísticas/genética , Retinitis Pigmentosa , Pez Cebra
2.
Neurosurg Focus ; 56(2): E2, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301244

RESUMEN

OBJECTIVE: Several studies have compared the immune microenvironment of isocitrate dehydrogenase (IDH)-wildtype glioma versus IDH-mutant glioma. The authors sought to determine whether histological tumor progression in a subset of IDH-mutant glioma was associated with concomitant alterations in the intratumoral immune microenvironment. METHODS: The authors performed bulk RNA sequencing on paired and unpaired samples from patients with IDH-mutant glioma who underwent surgery for tumor progression across multiple timepoints. They compared patterns of differential gene expression, overall inflammatory signatures, and transcriptomic measures of relative immune cell proportions. RESULTS: A total of 55 unique IDH-mutant glioma samples were included in the analysis. The authors identified multiple genes associated with progression and higher grade across IDH-mutant oligodendrogliomas and astrocytomas. Compared with lower-grade paired samples, grade 4 IDH-mutant astrocytomas uniquely demonstrated upregulation of VEGFA in addition to counterproductive alterations in inflammatory score reflective of a more hostile immune microenvironment. CONCLUSIONS: Here, the authors have provided a transcriptomic analysis of a progression cohort for IDH-mutant glioma. Compared with lower-grade tumors, grade 4 astrocytomas displayed alterations that may inform the timing of antiangiogenic and immune-based therapy as these tumors progress.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Regulación hacia Arriba , Mutación/genética , Glioma/genética , Glioma/patología , Astrocitoma/genética , Microambiente Tumoral/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Brain ; 145(10): 3654-3665, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130310

RESUMEN

It is unclear why exactly gliomas show preferential occurrence in certain brain areas. Increased spiking activity around gliomas leads to faster tumour growth in animal models, while higher non-invasively measured brain activity is related to shorter survival in patients. However, it is unknown how regional intrinsic brain activity, as measured in healthy controls, relates to glioma occurrence. We first investigated whether gliomas occur more frequently in regions with intrinsically higher brain activity. Second, we explored whether intrinsic cortical activity at individual patients' tumour locations relates to tumour and patient characteristics. Across three cross-sectional cohorts, 413 patients were included. Individual tumour masks were created. Intrinsic regional brain activity was assessed through resting-state magnetoencephalography acquired in healthy controls and source-localized to 210 cortical brain regions. Brain activity was operationalized as: (i) broadband power; and (ii) offset of the aperiodic component of the power spectrum, which both reflect neuronal spiking of the underlying neuronal population. We additionally assessed (iii) the slope of the aperiodic component of the power spectrum, which is thought to reflect the neuronal excitation/inhibition ratio. First, correlation coefficients were calculated between group-level regional glioma occurrence, as obtained by concatenating tumour masks across patients, and group-averaged regional intrinsic brain activity. Second, intrinsic brain activity at specific tumour locations was calculated by overlaying patients' individual tumour masks with regional intrinsic brain activity of the controls and was associated with tumour and patient characteristics. As proposed, glioma preferentially occurred in brain regions characterized by higher intrinsic brain activity in controls as reflected by higher offset. Second, intrinsic brain activity at patients' individual tumour locations differed according to glioma subtype and performance status: the most malignant isocitrate dehydrogenase-wild-type glioblastoma patients had the lowest excitation/inhibition ratio at their individual tumour locations as compared to isocitrate dehydrogenase-mutant, 1p/19q-codeleted glioma patients, while a lower excitation/inhibition ratio related to poorer Karnofsky Performance Status, particularly in codeleted glioma patients. In conclusion, gliomas more frequently occur in cortical brain regions with intrinsically higher activity levels, suggesting that more active regions are more vulnerable to glioma development. Moreover, indices of healthy, intrinsic excitation/inhibition ratio at patients' individual tumour locations may capture both tumour biology and patients' performance status. These findings contribute to our understanding of the complex and bidirectional relationship between normal brain functioning and glioma growth, which is at the core of the relatively new field of 'cancer neuroscience'.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Neoplasias Encefálicas/patología , Estudios Transversales , Mutación , Glioma/patología , Encéfalo/patología
4.
Neurosurg Focus ; 52(2): E6, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35104795

RESUMEN

Immunotherapy has emerged as a promising approach for treating aggressive solid tumors, even within the CNS. Mutation in the metabolic gene isocitrate dehydrogenase 1 (IDH1) represents not only a major glioma defining biomarker but also an attractive therapeutic neoantigen. As patients with IDH-mutant glioma enter early-phase vaccine and immune checkpoint inhibitor clinical trials, there is emerging evidence that implicates the oncometabolite, 2-hydroxyglutarate (2HG), generated by the neomorphic activity of mutant IDH, as a potential barrier to current immunotherapeutic approaches. Here, the authors review the immunomodulatory and immunosuppressive roles of 2HG within the unique IDH-mutant glioma tumor immune microenvironment and discuss promising immunotherapeutic approaches currently being investigated in preclinical models.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Inmunoterapia , Isocitrato Deshidrogenasa/genética , Mutación/genética , Microambiente Tumoral
5.
J Stroke Cerebrovasc Dis ; 31(3): 106277, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35007934

RESUMEN

BACKGROUND: For patients with acute, serious neurological conditions presenting to the emergency department (ED), prognostication is typically based on clinical experience, scoring systems and patient co-morbidities. Because estimating a poor prognosis influences caregiver decisions to withdraw life-sustaining therapy, we investigated the consistency of prognostication across a spectrum of neurology physicians. METHODS: Five acute neurological presentations (2 with large hemispheric infarction; 1 with brainstem infarction, 1 with lobar hemorrhage, and 1 with hypoxic-ischemic encephalopathy) were selected for a department-wide prognostication simulation exercise. All had presented to our tertiary care hospital's ED, where a poor outcome was predicted by the ED neurology team within 24 hours of onset. Relevant clinical, laboratory and imaging data available before ED prognostication were presented on a web-based platform to 120 providers blinded to the actual outcome. The provider was requested to rank-order, from most to least likely, the predicted 90-day modified Rankin Scale (mRS) score. To determine the accuracy of individual outcome predictions we compared the patient's the actual 90-day mRS score to highest ranked predicted mRS score. Additionally, the group's "weighted" outcomes, accounting for the entire spectrum of mRS scores ranked by all respondents, were compared to the actual outcome for each case. Consistency was compared between pre-specified provider roles: neurology trainees versus faculty; non-vascular versus vascular faculty. RESULTS: Responses ranged from 106-110 per case. Individual predictions were highly variable, with predictions matching the actual mRS scores in as low as 2% of respondents in one case and 95% in another case. However, as a group, the weighted outcome matched the actual mRS score in 3 of 5 cases (60%). There was no significant difference between subgroups based on expertise (stroke/neurocritical care versus other) or experience (faculty versus trainee) in 4 of 5 cases. CONCLUSION: Acute neuro-prognostication is highly variable and often inaccurate among neurology providers. Significant differences are not attributable to experience or subspecialty expertise. The mean outcome prediction from group of providers ("the wisdom of the crowd") may be superior to that of individual providers.


Asunto(s)
Urgencias Médicas , Enfermedades del Sistema Nervioso , Enfermedad Aguda , Servicio de Urgencia en Hospital , Humanos , Enfermedades del Sistema Nervioso/terapia , Pronóstico , Resultado del Tratamiento
6.
Proc Natl Acad Sci U S A ; 115(36): E8388-E8394, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30082399

RESUMEN

Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting.


Asunto(s)
Neoplasias Encefálicas , Cianuros/farmacología , Genotipo , Glioma , Guanidinas/farmacología , Isocitrato Deshidrogenasa/genética , Terapia Molecular Dirigida/métodos , Mutación , Proteínas de Neoplasias/genética , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Sistemas de Liberación de Medicamentos/métodos , Femenino , Glioma/tratamiento farmacológico , Glioma/enzimología , Glioma/genética , Humanos , Masculino , Ratones , Ratones SCID , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Curr Neurol Neurosci Rep ; 20(7): 21, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444979

RESUMEN

PURPOSE OF REVIEW: Low-grade gliomas (LGG) are a group of primary brain tumors that arise from supporting glial cells. They are characterized by a mutation in the isocitrate dehydrogenase (IDH) enzyme and include astrocytomas and oligodendrogliomas. They usually affect young adults, and their main treatment consists of surgical resection, followed by radiation and chemotherapy in selected patients. This article reviews recent research on the clinical and molecular aspects of the disease and innovative therapeutic modalities in the process. RECENT FINDINGS: Newly identified clinical and molecular features are currently used in the classification of LGG and applied in treatment-planning decisions. Advanced studies on the cellular level have an advanced understanding of the metabolic effects induced by IDH mutations, offering opportunities for specific targeted therapies that may improve patient outcomes. Such findings may lead to a paradigm shift in the treatment of these tumors. Although LGG are sensitive to radiation and chemotherapy, these therapies are not curative, and patient survival remains limited, raising the need for more creative and effective interventions.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Adulto Joven
8.
J Neurooncol ; 141(2): 327-335, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30536195

RESUMEN

PURPOSE: With the updated World Health Organization (WHO) 2016 neuropathological diagnostic criteria, radiographic prognostic associations in lower-grade gliomas (LGG, WHO grade II and III) are undergoing re-evaluation. METHODS: We identified 316 LGG patients (151 grade II and 165 grade III) for a combined cohort from three independent databases. We analyzed the preoperative axial FLAIR, axial T2-weighted and post-gadolinium volumetric T1-weighted MR images. The molecular data collected included the status of IDH1/2, TP53, TERT promoter and ATRX mutations, in addition to 1p/19q co-deletions. In a subset of cases (n = 133), we assessed the "T2-FLAIR mismatch" sign. RESULTS: Gliomas were assigned to one of the three molecular groups: Group O (IDH-mutant, 1p/19q co-deleted oligodendrogliomas, n = 95), Group A (IDH-mutant, ATRX inactivated astrocytomas, n = 175) and Group G (IDH wild-type, GBM-like, n = 46). A contrast-enhancing tumor was seen in 98 patients (31%), most frequently in Group G (n = 28/45, 57%), when compared to Group A (n = 49/175, 28%) and Group O (n = 24/95, 25.3%) tumors (p = 0.008 and p = 0.0011, respectively). Consistent with previous reports, T2-FLAIR mismatch was preferentially found in Group A tumors (73.1%, 60 of 82), although its presence was not associated with survival, after controlling for molecular group. False positive mismatch sign was noted in 28.5% (12/42) Group O tumors, but none of the tumors in Group G. A combination of all three factors: age under 40 years at first diagnosis, a tumor size larger than 6 cm and T2-FLAIR mismatch was highly specific for IDH mutant astrocytoma (Group A). CONCLUSION: We identify radiographic correlates of molecular groups in lower-grade gliomas, which join clinical demographic features in defining the characteristic presentation of these tumors. Radiographic correlates of prognosis in LGG require re-evaluation within molecular group.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Imagen por Resonancia Magnética/métodos , Intensificación de Imagen Radiográfica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Estimación de Kaplan-Meier , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Supervivencia sin Progresión , Estudios Retrospectivos , Sensibilidad y Especificidad , Proteína p53 Supresora de Tumor/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Adulto Joven
9.
J Cancer Educ ; 34(3): 584-591, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29526021

RESUMEN

Cancer survivorship care plans (SCPs) are endorsed to support quality care for cancer survivors, but uptake is slow. We assessed knowledge, needs, and preferences for SCP content and delivery from a wide variety of stakeholders. We focused SCP content for head and neck cancer as it is a disease prone to long-term side effects requiring management from multiple providers. We conducted telephone-based, qualitative interviews. We purposively sampled head and neck cancer survivors (n = 4), primary care physicians in the community (n = 5), and providers affiliated with a large academic medical center (n = 5) who treat head and neck cancer, cancer specialists (n = 6), and nurse practitioners/supportive care staff (n = 5). Interviews were recorded, transcribed, and analyzed using direct content analysis. Few participants reported personal experience with SCPs, but most supported the concept. Several key themes emerged: (1) perceived ambiguity regarding roles and responsibilities for SCPs, (2) a need to tailor the content and language based on the intended recipient, (3) documentation process should be as automated and streamlined as possible, (4) concerns about using the SCP to coordinate with outside providers, and (5) that SCPs would have added value as a "living document." We also report SCP-related issues that are unique to serving patients diagnosed with head and neck cancer. Effort is needed to tailor SCPs for different recipients and optimize their potential for successful implementation, impact on care outcomes, and sustainability. Many cancer survivors may not receive a SCP as part of routine care. Survivors could engage their health care team by requesting a SCP.


Asunto(s)
Supervivientes de Cáncer , Planificación de Atención al Paciente , Actitud del Personal de Salud , Comunicación , Documentación , Femenino , Neoplasias de Cabeza y Cuello , Humanos , Entrevistas como Asunto , Masculino , Persona de Mediana Edad , Enfermeras Practicantes , Médicos de Atención Primaria , Rol Profesional
10.
Acta Neuropathol ; 136(5): 779-792, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30123936

RESUMEN

Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples. Exome sequencing in an initial cohort (n = 24) detected frequent alterations in genes residing on the X chromosome, with somatic intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene as the most common alteration (n = 5, 20.8%), along with alterations of other known X-linked cancer-related genes KDM6A (n =2, 8.3%), DDX3X, RBM10 and STAG2 (n = 1, 4.1% each). DMD inactivation (by genomic deletion or loss of protein expression) was ultimately detected in 17/53 progressive meningioma patients (32%). Importantly, patients with tumors harboring DMD inactivation had a shorter overall survival (OS) than their wild-type counterparts [5.1 years (95% CI 1.3-9.0) vs. median not reached (95% CI 2.9-not reached, p = 0.006)]. Given the known poor prognostic association of TERT alterations in these tumors, we also assessed for these events, and found seven patients with TERT promoter mutations and three with TERT rearrangements in this cohort (n = 10, 18.8%), including a recurrent novel RETREG1-TERT rearrangement that was present in two patients. In a multivariate model, DMD inactivation (p = 0.033, HR = 2.6, 95% CI 1.0-6.6) and TERT alterations (p = 0.005, HR = 3.8, 95% CI 1.5-9.9) were mutually independent in predicting unfavorable outcomes. Thus, DMD alterations identify a subset of progressive/high-grade meningiomas with worse outcomes.


Asunto(s)
Distrofina/genética , Eliminación de Gen , Neoplasias Meníngeas/genética , Meningioma/genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral/patología , Línea Celular Tumoral/ultraestructura , Estudios de Cohortes , Progresión de la Enfermedad , Distrofina/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Meningioma/diagnóstico por imagen , Meningioma/patología , Microscopía Electrónica de Transmisión , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , ARN Mensajero/metabolismo , Cromatina Sexual/genética , Telomerasa/genética , Telomerasa/metabolismo , Secuenciación del Exoma
12.
Semin Neurol ; 38(1): 41-49, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29548051

RESUMEN

The majority of World Health Organization grade II and grade III gliomas harbor heterozygous mutations in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1), and tumors with an IDH wild-type status show molecular features of a glioblastoma and simply may constitute a separate disease entity. This discovery has led to a profound shift in the way that gliomas are classified and, consequently, how treatment decisions are made. We will review the current understanding of IDH-mutant gliomagenesis and the preclinical models being used to investigate the underlying biology of these tumors and to explore new therapeutic options for these patients. We further summarize the results of recent pivotal trials addressing treatment of grade II and grade III gliomas and highlight promising IDH-mutant-specific therapies on the horizon.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Línea Celular Tumoral , Glioma/diagnóstico , Glioma/terapia , Isocitrato Deshidrogenasa , Animales , Humanos , Isocitrato Deshidrogenasa/genética
13.
Cancer ; 123(7): 1106-1114, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28026861

RESUMEN

Epidural metastases occur in 5% to 10% of cancer patients and represent a neurological emergency. Patients most commonly present with an acute onset of motor weakness, and restoration of neurological function is critically dependent on prompt diagnosis and treatment. This review discusses the clinical, epidemiological, and radiological features associated with epidural metastases and resulting spinal cord compression. Moreover, current treatment paradigms are reviewed. The timely initiation of radiation as well as surgery in select cases is critical for preserving neurological function and achieving local tumor control and pain control. Future studies investigating surgical and radiation treatment for metastatic epidural cord compression are urgently needed. Cancer 2017;123:1106-1114. © 2016 American Cancer Society.


Asunto(s)
Neoplasias Epidurales/diagnóstico , Neoplasias Epidurales/secundario , Neoplasias Epidurales/terapia , Neoplasias/patología , Terapia Combinada/métodos , Neoplasias Epidurales/epidemiología , Humanos , Imagen por Resonancia Magnética , Pronóstico , Resultado del Tratamiento
14.
Cancer ; 123(23): 4535-4546, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28980701

RESUMEN

The metabolic genes isocitrate dehydrogenase 1 (IDH1) and IDH2 are commonly mutated in low-grade glioma and in a subset of glioblastoma. These mutations co-occur with other recurrent molecular alterations, including 1p/19q codeletions and tumor suppressor protein 53 (TP53) and alpha thalassemia/mental retardation (ATRX) mutations, which together help to define a molecular signature that aids in the classification of gliomas and helps to better predict clinical behavior. A confluence of research suggests that glioma development in IDH-mutant and IDH wild-type tumors is driven by different oncogenic processes and responds differently to current treatment paradigms. Herein, the authors discuss the discovery of IDH mutations and associated molecular alterations in glioma, review clinical features common to patients with IDH-mutant glioma, and highlight current understanding of IDH mutation-driven gliomagenesis with implications for emerging treatment strategies. Cancer 2017;123:4535-4546. © 2017 American Cancer Society.


Asunto(s)
Glioma/genética , Glioma/terapia , Isocitrato Deshidrogenasa/genética , Mutación , Glioma/diagnóstico , Humanos
15.
Expert Opin Emerg Drugs ; 21(4): 441-452, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27809598

RESUMEN

INTRODUCTION: Gliomas are the most common malignant primary brain tumors in adults. Despite aggressive treatment with surgery, radiation and chemotherapy, these tumors are incurable and invariably recur. Molecular characterization of these tumors in recent years has advanced our understanding of gliomagenesis and offered an array of pathways that can be specifically targeted. Areas covered: The most commonly dysregulated signaling pathways found in gliomas will be discussed, as well as the biologic importance of these disrupted pathways and how each may contribute to tumor development. Our knowledge regarding these pathways are most relevant to Grade IV glioma/glioblastoma, but we will also discuss genomic categorization of low grade glioma. Further, drugs targeting single pathways, which have undergone early phase clinical trials will be reviewed, followed by an in depth discussion of emerging treatments on the horizon, which will include inhibitors of Epidermal Growth Factor Receptor (EGFR) and receptor tyrosine kinases, Phosphoinositide-3-Kinase (PI3K), angiogenesis, cell cycle and mutant Isocitrate Dehydrogenase (IDH) mutations. Expert opinion: Results from single agent targeted therapy trials have been modest. Lack of efficacy may stem from a combination of poor blood brain barrier penetration, the genetically heterogeneous make-up of the tumors and the emergence of resistance mechanisms. These factors can be overcome by rational drug design that capitalizes on ways to target critical pathways and limits upregulation of redundant pathways.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Adulto , Antineoplásicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Diseño de Fármacos , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/epidemiología , Glioblastoma/patología , Glioma/epidemiología , Glioma/patología , Humanos , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos
16.
Semin Neurol ; 34(4): 437-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25369439

RESUMEN

Misregulation of innate immunity leads to autoinflammation. Behçet disease is an autoinflammatory condition involving recurrent attacks of inflammation in skin, eyes, joints, and even the nervous system. The etiology may involve vascular inflammation. Central nervous system involvement in neuro-Behçet disease (NBD) comes in the form of parenchymal NBD or nonparenchymal NBD. The parenchymal form has a predilection for the brainstem, diencephalon and cerebral hemispheres, and represents a meningoencephalitis thought to be related to small vessel vasculitis. Cerebral venous sinus thrombosis, arising from a vasculitic process of large veins, comprises the majority of vascular NBD cases. The rarer monogenetic autoinflammatory syndromes are characterized by periodic fever, and typically present in the pediatric population. Neurologic involvement in these syndromes typically presents in the form of an aseptic meningitis. Treatment of autoinflammatory disorders involves immune modulation with corticosteroids, disease-modifying antirheumatic medications, and increasingly antibodies targeting cytokines like tumor necrosis factor α and interleukin 1.


Asunto(s)
Autoinmunidad , Síndrome de Behçet/complicaciones , Enfermedades del Sistema Nervioso Central/etiología , Inflamación/complicaciones , Síndrome de Behçet/inmunología , Enfermedades del Sistema Nervioso Central/inmunología , Humanos , Inflamación/inmunología
17.
Clin Cancer Res ; 30(14): 2996-3005, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718141

RESUMEN

PURPOSE: Treatment paradigms for isocitrate dehydrogenase (IDH)-mutant gliomas are rapidly evolving. Although typically indolent and responsive to initial treatment, these tumors invariably recur at a higher grade and require salvage treatment. Homozygous deletion of the tumor suppressor gene CDKN2A/B frequently emerges at recurrence in these tumors, driving poor patient outcomes. We investigated the effect of CDK-Rb pathway blockade on IDH-mutant glioma growth in vitro and in vivo using CDK4/6 inhibitors (CDKi). EXPERIMENTAL DESIGN: Cell viability, proliferation assays, and flow cytometry were used to examine the pharmacologic effect of two distinct CDKi, palbociclib and abemaciclib, in multiple patient-derived IDH-mutant glioma lines. Isogenic models were used to directly investigate the influence of CDKN2A/B status on CDKi sensitivity. Orthotopic xenograft tumor models were used to examine the efficacy and tolerability of CDKi in vivo. RESULTS: CDKi treatment leads to decreased cell viability and proliferative capacity in patient-derived IDH-mutant glioma lines, coupled with enrichment of cells in the G1 phase. CDKN2A inactivation sensitizes IDH-mutant glioma to CDKi in both endogenous and isogenic models with engineered CDKN2A deletion. CDK4/6 inhibitor administration improves survival in orthotopically implanted IDH-mutant glioma models. CONCLUSIONS: IDH-mutant gliomas with deletion of CDKN2A/B are sensitized to CDK4/6 inhibitors. These results support the investigation of the use of these agents in a clinical setting.


Asunto(s)
Aminopiridinas , Bencimidazoles , Proliferación Celular , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Inhibidor p15 de las Quinasas Dependientes de la Ciclina , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Glioma , Isocitrato Deshidrogenasa , Mutación , Piperazinas , Inhibidores de Proteínas Quinasas , Piridinas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Animales , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/genética , Glioma/genética , Glioma/tratamiento farmacológico , Glioma/patología , Ratones , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Bencimidazoles/farmacología , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Aminopiridinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piperazinas/farmacología , Piperazinas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Piridinas/farmacología , Piridinas/uso terapéutico , Línea Celular Tumoral , Eliminación de Gen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Homocigoto
18.
Cancer Cell ; 42(5): 904-914.e9, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38579724

RESUMEN

A subset of patients with IDH-mutant glioma respond to inhibitors of mutant IDH (IDHi), yet the molecular underpinnings of such responses are not understood. Here, we profiled by single-cell or single-nucleus RNA-sequencing three IDH-mutant oligodendrogliomas from patients who derived clinical benefit from IDHi. Importantly, the tissues were sampled on-drug, four weeks from treatment initiation. We further integrate our findings with analysis of single-cell and bulk transcriptomes from independent cohorts and experimental models. We find that IDHi treatment induces a robust differentiation toward the astrocytic lineage, accompanied by a depletion of stem-like cells and a reduction of cell proliferation. Furthermore, mutations in NOTCH1 are associated with decreased astrocytic differentiation and may limit the response to IDHi. Our study highlights the differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas and suggests a genetic modifier that may improve patient stratification.


Asunto(s)
Neoplasias Encefálicas , Diferenciación Celular , Isocitrato Deshidrogenasa , Mutación , Oligodendroglioma , Oligodendroglioma/genética , Oligodendroglioma/patología , Oligodendroglioma/tratamiento farmacológico , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/tratamiento farmacológico , Linaje de la Célula/efectos de los fármacos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proliferación Celular/efectos de los fármacos , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Ratones , Análisis de la Célula Individual/métodos
19.
Neuro Oncol ; 25(1): 4-25, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36239925

RESUMEN

Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Deshidrogenasa/genética , Consenso , Mutación , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia
20.
Dev Cell ; 13(1): 29-42, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17609108

RESUMEN

Cyclin-dependent kinase 1 (Cdk1) initiates mitosis and later activates the anaphase-promoting complex/cyclosome (APC/C) to destroy cyclins. Kinetochore-derived checkpoint signaling delays APC/C-dependent cyclin B destruction, and checkpoint-independent mechanisms cooperate to limit APC/C activity when kinetochores lack checkpoint components in early mitosis. The APC/C and cyclin B localize to the spindle and poles, but the significance and regulation of these populations remain unclear. Here we describe a critical spindle pole-associated mechanism, called the END (Emi1/NuMA/dynein-dynactin) network, that spatially restricts APC/C activity in early mitosis. The APC/C inhibitor Emi1 binds the spindle-organizing NuMA/dynein-dynactin complex to anchor and inhibit the APC/C at spindle poles, and thereby limits destruction of spindle-associated cyclin B. Cyclin B/Cdk1 activity recruits the END network and establishes a positive feedback loop to stabilize spindle-associated cyclin B critical for spindle assembly. The organization of the APC/C on the spindle also provides a framework for understanding microtubule-dependent organization of protein destruction.


Asunto(s)
Anafase/fisiología , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Huso Acromático/enzimología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC2/metabolismo , Cromosomas Humanos/metabolismo , Ciclina B/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Retroalimentación Fisiológica/fisiología , Células HCT116 , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA