Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 300(4): C792-802, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21123738

RESUMEN

The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.


Asunto(s)
Proliferación Celular , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Potasio/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5 , Técnicas de Placa-Clamp , Pirazoles/metabolismo , Transducción de Señal/fisiología , Canales de Sodio/genética , Canales de Sodio/metabolismo
2.
J Membr Biol ; 235(3): 191-210, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20544344

RESUMEN

Calcium (Ca(2+))-activated K(+) (K(Ca)) channels regulate membrane excitability and are activated by an increase in cytosolic Ca(2+) concentration ([Ca(2+)](i)), leading to membrane hyperpolarization. Most patch clamp experiments that measure K(Ca) currents use steady-state [Ca(2+)] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca(2+)](i) changes dynamically, for example during [Ca(2+)](i) oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca(2+)](i) on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each K(Ca) subtype in isolation were used to simultaneously measure agonist-evoked [Ca(2+)](i) signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca(2+)](i) oscillations induced a corresponding K(Ca) current that faithfully followed the [Ca(2+)](i) in 13-50% of cells, suggesting a good synchronization. However, [Ca(2+)](i) and K(Ca) current was much less synchronized in 50-76% of cells that exhibited Ca(2+)-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca(2+)](i) events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca(2+)](i) and K(Ca) current was least synchronized, 36% of total [Ca(2+)](i) spikes occurred without activating a corresponding K(Ca) current spike, suggesting that BK(Ca) channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca(2+)](i) and K(Ca) current suggests that this relationship is more complex than could be predicted from steady-state [Ca(2+)](i) and K(Ca) current. These phenomena may be important for encoding stimulus-response coupling in various cell types.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Carbacol/farmacología , Células Cultivadas , Fura-2 , Humanos , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA