Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Gene Ther ; 33(9-10): 518-528, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35350865

RESUMEN

Adeno-associated virus (AAV)-mediated clustered regularly interspaced short palindromic repeats (CRISPR) editing holds promise to restore missing dystrophin in Duchenne muscular dystrophy (DMD). Intramuscular coinjection of CRISPR-associated protein 9 (Cas9) and guide RNA (gRNA) vectors resulted in robust dystrophin restoration in short-term studies in the mdx mouse model of DMD. Intriguingly, this strategy failed to yield efficient dystrophin rescue in muscle in a long-term (18-month) systemic injection study. In-depth analyses revealed a selective loss of the gRNA vector after long-term systemic, but not short-term local injection. To determine whether preferential gRNA vector depletion is due to the mode of delivery (local vs. systemic) or the duration of the study (short term vs. long term), we conducted a short-term systemic injection study. The gRNA (4e12 vg/mouse in the 1:1 group or 1.2e13 vg/mouse in the 3:1 group) and Cas9 (4e12 vg/mouse) vectors were coinjected intravenously into 4-week-old mdx mice. The ratio of the gRNA to Cas9 vector genome copy dropped from 1:1 and 3:1 at injection to 0.4:1 and 1:1 at harvest 3 months later, suggesting that the route of administration, rather than the experimental duration, determines preferential gRNA vector loss. Consistent with our long-term systemic injection study, the vector ratio did not influence Cas9 expression. However, the 3:1 group showed significantly higher dystrophin expression and genome editing, better myofiber size distribution, and a more pronounced improvement in muscle function and electrocardiography. Our data suggest that the gRNA vector dose determines the outcome of systemic AAV CRISPR therapy for DMD.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Dependovirus/metabolismo , Distrofina/genética , Distrofina/metabolismo , Edición Génica/métodos , Terapia Genética/métodos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
2.
Front Physiol ; 12: 647010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897454

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked muscle-wasting disease caused by the loss of dystrophin. DMD is associated with muscle degeneration, necrosis, inflammation, fatty replacement, and fibrosis, resulting in muscle weakness, respiratory and cardiac failure, and premature death. There is no curative treatment. Investigations on disease-causing mechanisms offer an opportunity to identify new therapeutic targets to treat DMD. An abnormal elevation of the intracellular calcium ( Ca i 2 + ) concentration in the dystrophin-deficient muscle is a major secondary event, which contributes to disease progression in DMD. Emerging studies have suggested that targeting Ca2+-handling proteins and/or mechanisms could be a promising therapeutic strategy for DMD. Here, we provide an updated overview of the mechanistic roles the sarcolemma, sarcoplasmic/endoplasmic reticulum, and mitochondria play in the abnormal and sustained elevation of Ca i 2 + levels and their involvement in DMD pathogenesis. We also discuss current approaches aimed at restoring Ca2+ homeostasis as potential therapies for DMD.

3.
Nat Commun ; 12(1): 6769, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819506

RESUMEN

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


Asunto(s)
Sistemas CRISPR-Cas/inmunología , Terapia Genética/efectos adversos , Vectores Genéticos/inmunología , Músculo Esquelético/inmunología , Distrofia Muscular de Duchenne/terapia , Animales , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Perros , Distrofina/genética , Distrofina/inmunología , Edición Génica/métodos , Genes Reporteros/genética , Genes Reporteros/inmunología , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/patología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/inmunología
4.
Front Vet Sci ; 7: 80, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32219101

RESUMEN

Mouse models of human disease remain the bread and butter of modern biology and therapeutic discovery. Nonetheless, more often than not mouse models do not reproduce the pathophysiology of the human conditions they are designed to mimic. Naturally occurring large animal models have predominantly been found in companion animals or livestock because of their emotional or economic value to modern society and, unlike mice, often recapitulate the human disease state. In particular, numerous models have been discovered in dogs and have a fundamental role in bridging proof of concept studies in mice to human clinical trials. The present article is a review that highlights current canine models of human diseases, including Alzheimer's disease, degenerative myelopathy, neuronal ceroid lipofuscinosis, globoid cell leukodystrophy, Duchenne muscular dystrophy, mucopolysaccharidosis, and fucosidosis. The goal of the review is to discuss canine and human neurodegenerative pathophysiologic similarities, introduce the animal models, and shed light on the ability of canine models to facilitate current and future treatment trials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA