Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38610278

RESUMEN

Transient terahertz time-domain spectroscopy (THz-TDS) imaging has emerged as a novel non-ionizing and noninvasive biomedical imaging modality, designed for the detection and characterization of a variety of tissue malignancies due to their high signal-to-noise ratio and submillimeter resolution. We report our design of a pair of aspheric focusing lenses using a commercially available lens-design software that resulted in about 200 × 200-µm2 focal spot size corresponding to the 1-THz frequency. The lenses are made of high-density polyethylene (HDPE) obtained using a lathe fabrication and are integrated into a THz-TDS system that includes low-temperature GaAs photoconductive antennae as both a THz emitter and detector. The system is used to generate high-resolution, two-dimensional (2D) images of formalin-fixed, paraffin-embedded murine pancreas tissue blocks. The performance of these focusing lenses is compared to the older system based on a pair of short-focal-length, hemispherical polytetrafluoroethylene (TeflonTM) lenses and is characterized using THz-domain measurements, resulting in 2D maps of the tissue refractive index and absorption coefficient as imaging markers. For a quantitative evaluation of the lens effect on the image resolution, we formulated a lateral resolution parameter, R2080, defined as the distance required for a 20-80% transition of the imaging marker from the bare paraffin region to the tissue region in the same image frame. The R2080 parameter clearly demonstrates the advantage of the HDPE lenses over TeflonTM lenses. The lens-design approach presented here can be successfully implemented in other THz-TDS setups with known THz emitter and detector specifications.


Asunto(s)
Lentes , Imágen por Terahertz , Animales , Ratones , Polietileno , Politetrafluoroetileno , Frío
2.
Immunol Invest ; 49(7): 808-823, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32498585

RESUMEN

INTRODUCTION: The tumor-draining lymph node (TDLN) plays a role in tumor immunity. Intratumorally administered microspheres (MS) that encapsulate immunomodulatory agents have emerged as a treatment strategy capable of causing profound changes in the tumor microenvironment (TME) and eliciting potent antitumor effects. We hypothesized that local delivery of MS to the TME may also drain to and therefore target the TDLN to initiate antitumor immune responses. METHODS: Fluorescent MS were injected into orthotopically implanted murine pancreatic tumors, and tissues were examined by whole-mount microscopy and imaging flow cytometry. The role of the TDLN was investigated for mice treated with intratumoral interleukin-12 (IL-12)-encapsulated MS in combination with stereotactic body radiotherapy (SBRT) by cytokine profile and TDLN ablation. RESULTS: Fluorescent AF-594 MS delivered intratumorally were detected in the tumor, peritumoral lymphatics, and the TDLN 2 h after injection. Phagocytic cells were observed with internalized fluorescent MS. SBRT + IL-12 MS-induced upregulation of Th1 and antitumor factors IL-12, IFN-γ, CXCL10, and granzyme B in the TDLN, and excision of the TDLN partially abrogated treatment efficacy. CONCLUSIONS: Our results demonstrate that intratumorally administered MS not only target the TME, but also drain to the TDLN. Furthermore, MS encapsulated with a potent antitumor cytokine, IL-12, induce an antitumor cytokine profile in the TDLN, which is essential for treatment efficacy.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Microesferas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Animales , Biomarcadores , Biomarcadores de Tumor , Carcinoma Ductal Pancreático/diagnóstico por imagen , Terapia Combinada , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunofenotipificación , Ganglios Linfáticos/inmunología , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/etiología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
J Cell Biochem ; 118(12): 4383-4393, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28444901

RESUMEN

Mesenchymal stromal cells (MSCs) are multipotent progenitors capable of differentiation into osteoblasts and can potentially serve as a source for cell-based therapies for bone repair. Many factors have been shown to regulate MSC differentiation into the osteogenic lineage such as the Cyclooxygenase-2 (COX2)/Prostaglandin E2 (PGE2) signaling pathway that is critical for bone repair. PGE2 binds four different receptors EP1-4. While most studies focus on the role PGE2 receptors EP2 and EP4 in MSC differentiation, our study focuses on the less studied, receptor subtype 1 (EP1) in MSC function. Recent work from our laboratory showed that EP1-/- mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation, suggesting that EP1 is a negative regulator of bone formation. In this study, the regulation of MSC osteogenic differentiation by EP1 receptor was investigated using EP1 genetic deletion in EP1-/- mice. The data suggest that EP1 receptor functions to maintain MSCs in an undifferentiated state. Loss of the EP1 receptor changes MSC characteristics and permits stem cells to undergo more rapid osteogenic differentiation. Notably, our studies suggest that EP1 receptor regulates MSC differentiation by modulating MSC bioenergetics, preventing the shift to mitochondrial oxidative phosphorylation by maintaining high Hif1α activity. Loss of EP1 results in inactivation of Hif1α, increased oxygen consumption rate and thus increased osteoblast differentiation. J. Cell. Biochem. 118: 4383-4393, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Subtipo EP1 de Receptores de Prostaglandina E/metabolismo , Animales , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Noqueados , Consumo de Oxígeno , Subtipo EP1 de Receptores de Prostaglandina E/genética
4.
Mol Ther Nucleic Acids ; 35(4): 102350, 2024 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-39469666

RESUMEN

Pronounced T cell exhaustion characterizes immunosuppressive tumors, with the tumor microenvironment (TME) employing multiple mechanisms to elicit this suppression. Traditional immunotherapies, such as immune checkpoint blockade, often fail due to their focus primarily on T cells. To overcome this, we utilized a proinflammatory cytokine, interleukin (IL)-12, that re-wires the immunosuppressive TME by inducing T cell effector function while also repolarizing immunosuppressive myeloid cells. Due to toxicities observed with systemic administration of this cytokine, we utilized lipid nanoparticles encapsulating mRNA encoding IL-12 for intratumoral injection. This strategy has been proven safe and tolerable in early clinical trials for solid malignancies. We report an unprecedented loss of exhausted T cells and the emergence of an activated phenotype in murine pancreatic ductal adenocarcinoma (PDAC) treated with stereotactic body radiation therapy (SBRT) and IL-12mRNA. Our mechanistic findings reveal that each treatment modality contributes to the T cell response differently, with SBRT expanding the T cell receptor repertoire and IL-12mRNA promoting robust T cell proliferation and effector status. This distinctive T cell signature mediated marked growth reductions and long-term survival in local and metastatic PDAC models. This is the first study of its kind combining SBRT with IL-12mRNA and provides a promising new approach for treating this aggressive malignancy.

5.
ACS Omega ; 8(11): 9925-9933, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36969433

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the significant reasons for cancer-related death in the United States due to a lack of timely prognosis and the poor efficacy of the standard treatment protocol. Immunotherapy-based neoadjuvant therapy, such as stereotactic body radiotherapy (SBRT), has shown promising results compared to conventional radiotherapy in strengthening the antitumor response in PDAC. To probe and quantify the antitumor response with SBRT, we propose to study the tumor microenvironment using terahertz time-domain spectroscopy (THz-TDS). Since the tumor's complex microenvironment plays a key role in disease progression and treatment supervision, THz-TDS can be a revolutionary tool to help in treatment planning by probing the changes in the tissue microenvironment. This paper presents THz-TDS of paraffin-embedded PDAC samples utilizing a clinically relevant genetically engineered mouse model. This Article aims to develop and validate a novel time-domain approximation method based on maximum a posteriori probability (MAP) estimation to extract terahertz parameters, namely, the refractive index and the absorption coefficient, from THz-TDS. Unlike the standard frequency-domain (FD) analysis, the parameters extracted from MAP construct better-conserved tissue parameters estimates, since the FD optimization often incorporates errors due to numerical instabilities during phase unwrapping, especially when propagating in lossy media. The THz-range index of refraction extracted from MAP and absorption coefficient parameters report a statistically significant distinction between PDAC tissue regions and their healthy equivalents. The coefficient of variation of the refractive index extracted by MAP is one order of magnitude lower compared to the one extracted from FD analysis. The index of refraction and absorption coefficient extracted from the MAP are suggested as the best imaging markers to reconstruct THz images of biological tissues to reflect their physical properties accurately and reproducibly. The obtained THz scans were validated using standard histopathology.

6.
Int J Radiat Oncol Biol Phys ; 115(3): 733-745, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202180

RESUMEN

PURPOSE: Many solid tumors present with perineural invasion (PNI), and innervation correlates with worsened prognosis. The effects that commonly administered therapies such as radiation therapy (RT) have on PNI status remain unknown. We investigated the contribution of RT on the nervous system and elucidated the implications that increased nerve signaling can have on tumor burden using our previously developed orthotopic murine model of rectal cancer (RC) and our targeted and clinically relevant short-course RT (SCRT) regimen. METHODS: Medical charts for patients with RC treated at the Wilmot Cancer Institute were obtained and PNI status was analyzed. Human data were accompanied by an orthotopic murine model of RC. Briefly, luciferase-expressing murine colon-38 (MC38-luc) tumor cells were injected orthotopically into the rectal wall of C57BL6 mice. Targeted SCRT (5 gray (Gy) per fraction for 5 consecutive fractions) was administered to the tumor. Intratumoral innervation was determined by immunohistochemistry (IHC), local norepinephrine (NE) concentration was quantified by enzyme-linked immunosorbent assay (ELISA), and ß2-adrenergic receptor (B2AR) expression was assessed by flow cytometry. Chronic NE signaling was mirrored by daily isoproterenol treatment, and the effect on tumor burden was determined by overall survival, presence of metastatic lesions, and tumor size. Isoproterenol signaling was inhibited by administration of propranolol. RESULTS: Human RC patients with PNI have decreased overall survival compared with patients without PNI. In our mouse model, SCRT induced the expression of genes involved in neurogenesis, increased local NE secretion, and upregulated B2AR expression. Treating mice with isoproterenol resulted in decreased overall survival, increased rate of metastasis, and reduced SCRT efficacy. Interestingly, the isoproterenol-induced decrease in SCRT efficacy could be abrogated by blocking the BAR through the use of propranolol, suggesting a direct role of BAR stimulation on impairing SCRT responses. CONCLUSIONS: Our results indicate that while SCRT is a valuable treatment, it is accompanied by adverse effects on the nervous system that may impede the efficacy of therapy and promote tumor burden. Therefore, we could speculate that therapies aimed at targeting this signaling cascade or impairing nerve growth in combination with SCRT may prove beneficial in future cancer treatment.


Asunto(s)
Propranolol , Neoplasias del Recto , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Isoproterenol , Propranolol/farmacología , Ratones Endogámicos C57BL , Neoplasias del Recto/patología
7.
Cell Death Dis ; 14(7): 470, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495596

RESUMEN

Rectal cancer ranks as the second leading cause of cancer-related deaths. Neoadjuvant therapy for rectal cancer patients often results in individuals that respond well to therapy and those that respond poorly, requiring life-altering excision surgery. It is inadequately understood what dictates this responder/nonresponder divide. Our major aim is to identify what factors in the tumor microenvironment drive a fraction of rectal cancer patients to respond to radiotherapy. We also sought to distinguish potential biomarkers that would indicate a positive response to therapy and design combinatorial therapeutics to enhance radiotherapy efficacy. To address this, we developed an orthotopic murine model of rectal cancer treated with short course radiotherapy that recapitulates the bimodal response observed in the clinic. We utilized a robust combination of transcriptomics and protein analysis to identify differences between responding and nonresponding tumors. Our mouse model recapitulates human disease in which a fraction of tumors respond to radiotherapy (responders) while the majority are nonresponsive. We determined that responding tumors had increased damage-induced cell death, and a unique immune-activation signature associated with tumor-associated macrophages, cancer-associated fibroblasts, and CD8+ T cells. This signature was dependent on radiation-induced increases of Type I Interferons (IFNs). We investigated a therapeutic approach targeting the cGAS/STING pathway and demonstrated improved response rate following radiotherapy. These results suggest that modulating the Type I IFN pathway has the potential to improve radiation therapy efficacy in RC.


Asunto(s)
Interferón Tipo I , Neoplasias del Recto , Humanos , Animales , Ratones , Linfocitos T CD8-positivos/patología , Neoplasias del Recto/genética , Neoplasias del Recto/radioterapia , Resultado del Tratamiento , Terapia Neoadyuvante/métodos , Microambiente Tumoral
8.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961513

RESUMEN

The immunosuppressive milieu in pancreatic cancer (PC) is a significant hurdle to treatments, resulting in survival statistics that have barely changed in 5 decades. Here we present a combination treatment consisting of stereotactic body radiation therapy (SBRT) and IL-12 mRNA lipid nanoparticles delivered directly to pancreatic murine tumors. This treatment was effective against primary and metastatic models, achieving cures in both settings. IL-12 protein concentrations were transient and localized primarily to the tumor. Depleting CD4 and CD8 T cells abrogated treatment efficacy, confirming they were essential to treatment response. Single cell RNA sequencing from SBRT/IL-12 mRNA treated tumors demonstrated not only a complete loss of T cell exhaustion, but also an abundance of highly proliferative and effector T cell subtypes. SBRT elicited T cell receptor clonal expansion, whereas IL-12 licensed these cells with effector function. This is the first report demonstrating the utility of SBRT and IL-12 mRNA in PC. Statement of significance: This study demonstrates the use of a novel combination treatment consisting of radiation and immunotherapy in murine pancreatic tumors. This treatment could effectively treat local and metastatic disease, suggesting it may have the potential to treat a cancer that has not seen a meaningful increase in survival in 5 decades.

9.
Adv Radiat Oncol ; 7(2): 100867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036637

RESUMEN

PURPOSE: Orthotopic tumors more closely recapitulate human cancers than do ectopic models; however, precision targeting of such internal tumors for radiation therapy (RT) without inducing systemic toxicity remains a barrier. We developed an innovative murine orthotopic rectal tumor model where the insertion of clinical grade titanium fiducial clips on opposing sides of the rectal tumor allowed for targeted administration of short-course radiation therapy (SCRT). With this novel approach, clinically relevant RT regimens can be administered to orthotopic tumors to explore the biology and efficacy of radiation alone or as a combination therapy in a murine model that closely recapitulates human disease. METHODS AND MATERIALS: Murine Colon 38-luciferase tumor cells were injected into the rectal wall of syngeneic mice, and fiducial clips were applied to demarcate the tumor. An SCRT regimen consisting of 5 consecutive daily doses of 5 Gy delivered by an image-guided conformal small animal irradiator was administered 9 days after implantation. Tumor burden and survival were monitored along with histological and flow cytometric analyses on irradiated versus untreated tumors at various time points. RESULTS: SCRT administered to orthotopic rectal tumors resulted in a reduction in tumor burden and enhanced overall survival with no apparent signs of systemic toxicity. This treatment paradigm resulted in significant reductions in tumor cellularity and increases in fibrosis and hyaluronic acid production, recapitulating the SCRT-induced effects observed in human cancers. CONCLUSIONS: We have established a means to target murine orthotopic rectal tumors using fiducial markers with a fractionated and clinically relevant SCRT schedule that results in an RT response similar to what is observed in human rectal cancer. We also validated our model through examining various parameters associated with human cancer that are influenced by irradiation. This model can be used to further explore RT doses and scheduling, and to test combinatorial therapies.

10.
Clin Cancer Res ; 28(1): 150-162, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862242

RESUMEN

PURPOSE: Stereotactic body radiotherapy (SBRT) is an emerging treatment modality for pancreatic ductal adenocarcinoma (PDAC), which can effectively prime cytotoxic T cells by inducing immunogenic tumor cell death in preclinical models. SBRT effects on human PDAC have yet to be thoroughly investigated; therefore, this study aimed to characterize immunomodulation in the human PDAC tumor microenvironment following therapy. EXPERIMENTAL DESIGN: Tumor samples were obtained from patients with resectable PDAC. Radiotherapy was delivered a median of 7 days prior to surgical resection, and sections were analyzed by multiplex IHC (mIHC), RNA sequencing, and T-cell receptor sequencing (TCR-seq). RESULTS: Analysis of SBRT-treated tumor tissue indicated reduced tumor cell density and increased immunogenic cell death relative to untreated controls. Radiotherapy promoted collagen deposition; however, vasculature was unaffected and spatial analyses lacked evidence of T-cell sequestration. Conversely, SBRT resulted in fewer tertiary lymphoid structures and failed to lessen or reprogram abundant immune suppressor populations. Higher percentages of PD-1+ T cells were observed following SBRT, and a subset of tumors displayed more clonal T-cell repertoires. CONCLUSIONS: These findings suggest that SBRT augmentation of antitumor immunogenicity may be dampened by an overabundance of refractory immunosuppressive populations, and support the continued development of SBRT/immunotherapy combination for human PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Radiocirugia , Carcinoma Ductal Pancreático/radioterapia , Humanos , Neoplasias Pancreáticas/radioterapia , Microambiente Tumoral
11.
J Immunother Cancer ; 10(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35851308

RESUMEN

BACKGROUND: Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS: Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS: We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS: These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Imidazoles/farmacología , Neoplasias Hepáticas , Neoplasias Pancreáticas , Radiocirugia , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Microambiente Tumoral , Neoplasias Pancreáticas
12.
Cancer Immunol Res ; 8(1): 94-107, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31719057

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) continues to have a dismal prognosis, in part, due to ineffective treatment strategies. The efficacy of some chemotherapies and especially radiotherapy is mediated partially by the immune system. Therefore, we hypothesized that profiling the immune response following chemotherapy and/or irradiation can be used as a readout for treatment efficacy but also to help identify optimal therapeutic schedules for PDAC. Using murine models of PDAC, we demonstrated that concurrent administration of stereotactic body radiotherapy (SBRT) and a modified dose of FOLFIRINOX (mFX) resulted in superior tumor control when compared with single or sequential treatment groups. Importantly, this combined treatment schedule enhanced the magnitude of immunogenic cell death, which in turn amplified tumor antigen presentation by dendritic cells and intratumoral CD8+ T-cell infiltration. Concurrent therapy also resulted in systemic immunity contributing to the control of established metastases. These findings provide a rationale for pursuing concurrent treatment schedules of SBRT with mFX in PDAC.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Muerte Celular Inmunogénica , Neoplasias Pulmonares/secundario , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/patología , Radiocirugia/métodos , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Terapia Combinada , Células Dendríticas/inmunología , Femenino , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/inmunología
13.
Cell Rep ; 29(2): 406-421.e5, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597100

RESUMEN

Over 80% of pancreatic ductal adenocarcinoma (PDA) patients are diagnosed with non-resectable late-stage disease that lacks effective neoadjuvant therapies. Stereotactic body radiation therapy (SBRT) has shown promise as an emerging neoadjuvant approach for treating PDA, and here, we report that its combination with local interleukin-12 (IL-12) microsphere (MS) immunotherapy results in marked tumor reduction and cures in multiple preclinical mouse models of PDA. Our findings demonstrate an increase of intratumoral interferon gamma (IFNγ) production following SBRT/IL-12 MS administration that initiates suppressor cell reprogramming and a subsequent increase in CD8 T cell activation. Furthermore, SBRT/IL-12 MS therapy results in the generation of systemic tumor immunity that is capable of eliminating established liver metastases, providing a rationale for follow-up studies in advanced metastatic disease.


Asunto(s)
Interleucina-12/uso terapéutico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/terapia , Radiocirugia , Microambiente Tumoral/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Reprogramación Celular , Humanos , Inmunidad , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Microesferas , Modelos Biológicos , Células Mieloides/patología , Análisis de Supervivencia , Carga Tumoral , Neoplasias Pancreáticas
14.
Cancer Microenviron ; 10(1-3): 57-68, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28822081

RESUMEN

The dual specificity phosphatases (DUSPs) constitute a family of stress-induced enzymes that provide feedback inhibition on mitogen-activated protein kinases (MAPKs) critical in key aspects of oncogenic signaling. While described in other tumor types, the landscape of DUSP mRNA expression in glioblastoma (GB) remains largely unexplored. Interrogation of the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) revealed induction (DUSP4, DUSP6), repression (DUSP2, DUSP7-9), or mixed (DUSP1, DUSP5, DUSP10, DUSP15) DUSP transcription of select DUSPs in bulk tumor specimens. To resolve features specific to the tumor microenvironment, we searched the Ivy Glioblastoma Atlas Project (Ivy GAP) repository, which highlight DUSP1, DUSP5, and DUSP6 as the predominant family members induced within pseudopalisading and perinecrotic regions. The inducibility of DUSP1 in response to hypoxia, dexamethasone, or the chemotherapeutic agent camptothecin was confirmed in GB cell lines and tumor-derived stem cells (TSCs). Moreover, we show that loss of DUSP1 expression is a characteristic of TSCs and correlates with expression of tumor stem cell markers in situ (ABCG2, PROM1, L1CAM, NANOG, SOX2). This work reveals a dynamic pattern of DUSP expression within the tumor microenvironment that reflects the cumulative effects of factors including regional ischemia, chemotherapeutic exposure among others. Moreover, our observation regarding DUSP1 dysregulation within the stem cell niche argue for its importance in the survival and proliferation of this therapeutically resistant population.

15.
Stem Cells Dev ; 25(2): 114-22, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26487485

RESUMEN

There is emerging interest in stem cell energy metabolism and its effect on differentiation. Bioenergetic changes in differentiating bone marrow mesenchymal stem cells (MSCs) are poorly understood and were the focus of our study. Using bioenergetic profiling and transcriptomics, we have established that MSCs activate the mitochondrial process of oxidative phosphorylation (OxPhos) during osteogenic differentiation, but they maintain levels of glycolysis similar to undifferentiated cells. Consistent with their glycolytic phenotype, undifferentiated MSCs have high levels of hypoxia-inducible factor 1 (HIF-1). Osteogenically induced MSCs downregulate HIF-1 and this downregulation is required for activation of OxPhos. In summary, our work provides important insights on MSC bioenergetics and proposes a HIF-based mechanism of regulation of mitochondrial OxPhos in MSCs.


Asunto(s)
Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Metabolismo Energético/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Mitocondrias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA