Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(5): 2468-2478, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38252456

RESUMEN

Wastewater is a source for many contaminants of emerging concern (CECs), and surface waters receiving wastewater discharge often serve as source water for downstream drinking water treatment plants. Nontargeted analysis and suspect screening methods were used to characterize chemicals in residence-time-weighted grab samples and companion polar organic chemical integrative samplers (POCIS) collected on three separate hydrologic sampling events along a surface water flow path representative of de facto water reuse. The goal of this work was to examine the fate of CECs along the study flow path as water is transported from wastewater effluent through drinking water treatment. Grab and POCIS samples provided a comparison between residence-time-weighted single-point and integrative sample results. This unique and rigorous study design, coupled with advanced analytical chemistry tools, provided important insights into chemicals found in drinking water and their potential sources, which can be used to help prioritize chemicals for further study. K-means clustering analysis was used to identify patterns in chemical occurrences across both sampling sites and sampling events. Chemical features that occurred frequently or survived drinking water treatment were prioritized for identification, resulting in the probable identification of over 100 CECs in the watershed and 28 CECs in treated drinking water.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Compuestos Orgánicos/análisis
2.
Environ Sci Technol ; 57(48): 20159-20168, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37934924

RESUMEN

Research on per- and polyfluoroalkyl substances (PFAS) frequently incorporates organofluorine measurements, particularly because they could support a class-based approach to regulation. However, standardized methods for organofluorine analysis in a broad suite of matrices are currently unavailable, including a method for extractable organofluorine (EOF) measured using combustion ion chromatography (CIC). Here, we report the results of an international interlaboratory comparison. Seven laboratories representing academia, government, and the private sector measured paired EOF and PFAS concentrations in groundwater and eel (Anguilla rostrata) from a site contaminated by aqueous film-forming foam. Among all laboratories, targeted PFAS could not explain all EOF in groundwater but accounted for most EOF in eel. EOF results from all laboratories for at least one replicate extract fell within one standard deviation of the interlaboratory mean for groundwater and five out of seven laboratories for eel. PFAS spike mixture recoveries for EOF measurements in groundwater and eel were close to the criterion (±30%) for standardized targeted PFAS methods. Instrumental operation of the CIC such as replicate sample injections was a major source of measurement uncertainty. Blank contamination and incomplete inorganic fluorine removal may introduce additional uncertainties. To elucidate the presence of unknown organofluorine using paired EOF and PFAS measurements, we recommend that analysts carefully consider confounding methodological uncertainties such as differences in precision between measurements, data processing steps such as blank subtraction and replicate analyses, and the relative recoveries of PFAS and other fluorine compounds.


Asunto(s)
Anguilla , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Animales , Fluorocarburos/análisis , Agua Subterránea/química , Agua , Flúor/análisis , Flúor/química , Contaminantes Químicos del Agua/análisis
3.
J Great Lakes Res ; 48(6): 1432-1443, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36643389

RESUMEN

An international effort to restore contaminated areas across the Great Lakes has been underway for over 50 years. Although experts have increasingly recognized the inherent connections between ecological conditions and community level benefits, Great Lakes community revitalization continues to be a broad and complex topic, lacking a comprehensive definition. The purpose of this study was to generate a testable "AOC-Revitalization Framework" for linking remediation and restoration success, represented by Beneficial Use Impairment (BUI) removal in U.S. Great Lakes Areas of Concern (AOC), to community revitalization. Using directed content analysis, we conducted a literature review and identified 433 potential revitalization metrics and indicators and grouped them into 15 broader community revitalization attributes to develop the following definition of Great Lakes community revitalization: "locally driven community resurgence resulting in resilient and equitable enhancements to social, economic, and environmental community structures." We surveyed experts within the Great Lakes AOC program on the likelihood remediation and restoration success, would positively impact revitalization attributes. Focus groups triangulated survey results. Results identified BUI removal was expected to positively affect revitalization, but the type of revitalization outcome was based on the BUI being removed. The AOC-Revitalization Framework is the first to empirically outline these possible linkages, providing a clear testable structure for future research; it can be used to better understand how environmental improvements are or are not leading to community revitalization and more accurately identify components of revitalization impacted, thus supporting more equitable representation, communication, and measurement of the relationship.

4.
Arch Environ Contam Toxicol ; 74(3): 361-371, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28601932

RESUMEN

Current methods for evaluating exposure in ecosystems contaminated with hydrophobic organic contaminants typically focus on sediment exposure. However, a comprehensive environmental assessment requires a more holistic approach that not only estimates sediment concentrations, but also accounts for exposure by quantifying other pathways, such as bioavailability, bioaccumulation, trophic transfer potential, and transport of hydrophobic organic contaminants within and outside of the aquatic system. The current study evaluated the ability of multiple metrics to estimate exposure in an aquatic ecosystem. This study utilized a small lake contaminated with polychlorinated biphenyls (PCBs) to evaluate exposure to multiple trophic levels as well as the transport of these contaminants within and outside of the lake. The PCBs were localized to sediments in one area of the lake, yet this area served as the source of PCBs to aquatic invertebrates, emerging insects, and fish and terrestrial spiders in the riparian ecosystem. The Tenax extractable and biota PCB concentrations indicated tissue concentrations were localized to benthic invertebrates and riparian spiders in a specific cove. Fish data, however, demonstrated that fish throughout the lake had PCB tissue concentrations, leading to wider exposure risk. The inclusion of PCB exposure measures at several trophic levels provided multiple lines of evidence to the scope of exposure through the aquatic and riparian food web, which aids in assessing risk and developing potential future remediation strategies.


Asunto(s)
Ecotoxicología/métodos , Exposición a Riesgos Ambientales/análisis , Bifenilos Policlorados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Biota , Ecosistema , Peces , Cadena Alimentaria , Sedimentos Geológicos/química , Illinois , Insectos , Invertebrados , Lagos , Bifenilos Policlorados/farmacocinética , Bifenilos Policlorados/toxicidad , Arañas , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Technol ; 51(9): 4792-4802, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401767

RESUMEN

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.


Asunto(s)
Ríos/química , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales/química
6.
Environ Sci Technol ; 48(14): 7858-65, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24918303

RESUMEN

Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var. dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA; 232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root-soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with increasing chain length (0.11 to 0.36 log decrease per CF2 group). The biggest decrease (0.54-0.58 log decrease per CF2 group) was seen in fruit-soil concentration factors (FCFs). Crop anatomy and PFAA properties were utilized to explain data trends. In general, fruit crops were found to accumulate fewer long-chain PFAAs than shoot or root crops presumably due to an increasing number of biological barriers as the contaminant is transported throughout the plant (roots to shoots to fruits). These data were incorporated into a preliminary conceptual framework for PFAA accumulation in edible crops. In addition, these data suggest that edible crops grown in soils conventionally amended for nutrients with biosolids (that are not impacted by PFAA industries) are unlikely a significant source of long-chain PFAA exposure to humans.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Monitoreo del Ambiente , Fluorocarburos/metabolismo , Plantas/metabolismo , Aguas del Alcantarillado/química , Suelo/química , Humanos , Modelos Biológicos , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Contaminantes del Suelo/análisis
7.
Sci Total Environ ; 912: 169230, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072266

RESUMEN

Tetragnathid spiders have been used as sentinels to study the biotransport of contaminants between aquatic and terrestrial environments because a significant proportion of their diet consists of adult aquatic insects. A key knowledge gap in assessing tetragnathid spiders as sentinels is understanding the consistency of the year-to-year relationship between contaminant concentrations in spiders and sediment, water, and macroinvertebrates. We collected five years of data over a seven-year investigation at a PCB contaminated-sediment site to investigate if concentrations in spiders were consistently correlated with concentrations in sediment, water, and aquatic macroinvertebrates. Despite significant year-to-year variability in spider PCB concentrations, they were not correlated with sediment concentrations (p = 0.186). However, spider PCB concentrations were significantly, positively correlated with PCB concentrations in water (p < 0.0001, annual r2 = 0.35-0.84) and macroinvertebrates (p < 0.0001; annual r2 = 0.59-0.71). Analysis of covariance (ANCOVA) showed that spider PCB concentrations varied consistently with water (ß = 0.63) and macroinvertebrate PCB concentrations (ß = 1.023) among years. Overall, this study filled a critical knowledge gap in the utilization of tetragnathid spiders as sentinels of aquatic pollution by showing that despite year-to-year changes in PCB concentrations across environmental compartments, consistent relationships existed between spiders and water and aquatic macroinvertebrates.


Asunto(s)
Arañas , Agua , Animales , Monitoreo del Ambiente , Insectos , Contaminación Ambiental , Cadena Alimentaria
8.
Environ Toxicol Chem ; 43(7): 1509-1523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38860662

RESUMEN

The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Monitoreo del Ambiente/métodos , Lagos/química , Animales
9.
Rapid Commun Mass Spectrom ; 27(1): 97-102, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23239321

RESUMEN

RATIONALE: Stable isotope analyses of trace amounts of nitrous oxide gas require special instrumentation and laborious sample preparation methods that have hindered many laboratories from measuring this potent greenhouse gas. A simple modification to an Elemental Analyzer (EA) coupled to an Isotope Ratio Mass Spectrometry (IRMS) setup that allows users to measure the N and C isotopic ratios of nitrous oxide (N(2)O) and carbon dioxide (CO(2)) by injecting the gases directly into the EA is described. METHODS: The standard EA was fitted with a gas injection port and a home-made packed column filled with Hayesep Q polymer. A gas mixture of 3.1% N(2)O in helium (He) was injected directly into the EA. This method allowed large volumes of sample to be injected without saturating the column. RESULTS: The use of the home-made column resulted in better resolution of sample peaks and allowed smaller concentrations of the analyte to be injected. This study showed that this method produced accurate and reproducible stable isotope measurements with sample injection volumes ranging from 100 to 5000 µL, containing between 20 and 1000 nmol of analyte. CONCLUSIONS: This simple, inexpensive method can be useful for the laboratories that do not have access to more advanced and expensive interfaces to analyze nanomolar quantities of N(2)O and CO(2) from microbiological and ecological studies and offers a simple alternative for in-house measurements of these trace gases.

10.
Environ Sci Technol ; 47(24): 14062-9, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24206563

RESUMEN

The presence of perfluoroalkyl acids (PFAAs) in biosolids destined for use in agriculture has raised concerns about their potential to enter the terrestrial food chain via bioaccumulation in edible plants. Uptake of PFAAs by greenhouse lettuce ( Lactuca sativa ) and tomato ( Lycopersicon lycopersicum ) grown in an industrially impacted biosolids-amended soil, a municipal biosolids-amended soil, and a control soil was measured. Bioaccumulation factors (BAFs) were calculated for the edible portions of both lettuce and tomato. Dry weight concentrations observed in lettuce grown in a soil amended (biosolids:soil dry weight ratio of 1:10) with PFAA industrially contaminated biosolids were up to 266 and 236 ng/g for perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA), respectively, and reached 56 and 211 ng/g for PFBA and PFPeA in tomato, respectively. BAFs for many PFAAs were well above unity, with PFBA having the highest BAF in lettuce (56.8) and PFPeA the highest in tomato (17.1). In addition, the BAFs for PFAAs in greenhouse lettuce decreased approximately 0.3 log units per CF2 group. A limited-scale field study was conducted to verify greenhouse findings. The greatest accumulation was seen for PFBA and PFPeA in both field-grown lettuce and tomato; BAFs for PFBA were highest in both crops. PFAA levels measured in lettuce and tomato grown in field soil amended with only a single application of biosolids (at an agronomic rate for nitrogen) were predominantly below the limit of quantitation (LOQ). In addition, corn ( Zea mays ) stover, corn grains, and soil were collected from several full-scale biosolids-amended farm fields. At these fields, all PFAAs were below the LOQ in the corn grains and only trace amounts of PFBA and PFPeA were detected in the corn stover. This study confirms that the bioaccumulation of PFAAs from biosolids-amended soils depends strongly on PFAA concentrations, soil properties, the type of crop, and analyte.


Asunto(s)
Productos Agrícolas/metabolismo , Fluorocarburos/metabolismo , Lactuca/metabolismo , Aguas del Alcantarillado , Solanum lycopersicum/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Lactuca/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Proyectos Piloto , Transpiración de Plantas , Suelo
11.
Environ Toxicol Chem ; 42(9): 1982-1992, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36715411

RESUMEN

Merolimnic insects can accumulate and transport considerable amounts of aquatic contaminants to terrestrial systems. The rate of contaminant biotransport, termed insect-mediated contaminant flux (IMCF), depends on emergent insect biomass and contaminant accumulation, both functions of environmental concentration. We developed a mathematical model of IMCF and apply it to three ecotoxicological studies obtained through the US Environmental Protection Agency's ECOTOX database to determine at which concentration maximum IMCF occurs. Model results demonstrate that the maximum IMCF depends on competing rates of biomass loss and contaminant accumulation and does not necessarily occur at the highest insect or environmental contaminant concentration. In addition, modeling results suggest that sublethal contaminant effects (e.g., decreased growth) on insect biomass can be an important and potentially underappreciated control on IMCF. Environ Toxicol Chem 2023;42:1982-1992. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Contaminantes Químicos del Agua , Humanos , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Insectos , Biomasa
12.
J Environ Prot (Irvine, Calif) ; 14(12): 933-953, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38263955

RESUMEN

Hester-Dendy (HD) multi-plate samplers have been widely used by state and federal government agencies for bioassessment of water quality through use of macroinvertebrate community data. To help guide remediation and restoration efforts at the Niagara River Great Lakes Area of Concern site, a multi-agency study was conducted in 2014 to assess the contribution of seven major urban tributaries on the US side of the river toward the impairment of the Niagara River. As part of this study, macroinvertebrate communities were sampled using two co-located versions of HD samplers: one version used by the New York State Department of Environmental Conservation (NYSDEC) and another by the US Environmental Protection Agency Office of Research and Development. Samplers were deployed in tributaries in highly developed watersheds with high percent impervious surface. The two sampling methods varied in terms of number and size of plates, between-plate spacing, and deployment method. Comparison of the similarity/grouping of communities with multivariate ordination techniques, Nonmetric Multidimensional Scaling and Multi-Response Permutation Procedure, showed that both methods were able to detect differences in communities at stations, despite some grouping by month and method. The indices and metrics derived from the two HD methods were found to give comparable but not identical assessments of water quality. Despite their differences, the methods were robust with respect to water quality categories derived from indices used nationally (HBI) and by NY state (BAP). For the common richness metrics, total taxa and EPT richness, there was no statistical difference between means from 3 samplings. Some metrics, especially percent tolerant collector-gatherer individuals, did show significant differences at certain stations. Indicator Species Analysis showed some taxa associated with each method. The observed community differences were thought mostly due to the difference in sampler deployment position.

13.
Environ Toxicol Chem ; 42(2): 414-420, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36420666

RESUMEN

Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) are persistent, toxic, and bioaccumulative. Currently, PCDD/F monitoring programs primarily use fish and birds with potentially large home ranges to monitor temporal trends over broad spatial scales; sentinel organisms that provide targeted sediment contaminant information across small geographic areas have yet to be developed. Riparian orb-weaving spiders, which typically have small home ranges and consume primarily adult aquatic insects, are potential PCDD/F sentinels. Recent studies have demonstrated that spider tissue concentrations indicate the source and magnitude of dioxin-like chlorinated compounds in contaminated sediments, including polychlorinated biphenyls (PCBs). Our aim in the present study was to assess the utility of riparian spiders as sentinels for PCDD/F-contaminated sediments. We measured PCDD/F (total [Σ] and homologs) in surface sediments and spiders collected from three sites within the St. Louis River basin (Minnesota and Wisconsin, USA). We then compared (1) patterns in ΣPCDD/F concentrations between sediment and spiders, (2) the distribution of homologs within sediments and spiders when pooled across sites, and (3) the relationship between sediment and spider concentrations of PCDD/F homologs across 13 stations sampled across the three sites. The ΣPCDD/F concentrations in sediment (mean ± standard error 286 591 ± 97 614 pg/g) were significantly higher than those in riparian spiders (2463 ± 977 pg/g, p < 0.001), but the relative abundance of homologs in sediment and spiders were not significantly different. Spider homolog concentrations were significantly and positively correlated with sediment concentrations across a gradient of sediment PCDD/F contamination (R2 = 0.47, p < 0.001). Our results indicate that, as has been shown for other legacy organic chemicals like PCBs, riparian spiders are suitable sentinels of PCDD/F in contaminated sediment. Environ Toxicol Chem 2023;42:414-420. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Arañas , Animales , Sedimentos Geológicos/química , Arañas/química , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/toxicidad , Dibenzofuranos , Dibenzofuranos Policlorados
14.
Environ Sci Technol Lett ; 10(10): 891-896, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37840816

RESUMEN

The transfer of aquatic contaminants, including mercury (Hg), to terrestrial food webs is an often-overlooked exposure pathway to terrestrial animals. While research has implemented the use of shoreline spiders to assess aquatic to terrestrial Hg transfer, it is unclear whether Hg sources, estimated from isotope ratios, can be successfully resolved to inform site assessments and remedy effectiveness. To examine aquatic to terrestrial Hg transfer, we collected shoreline spiders (Tetragnatha spp.) and aquatic insect larvae (suborder Anisoptera) across a mosaic of aquatic and shoreline habitats in the St. Louis River and Bad River, tributaries to Lake Superior. The fraction of industrial Hg in sediments was reflected in the δ202Hg values of aquatic dragonfly larvae and predatory fish, connecting benthic Hg sources to the aquatic food web. Shoreline spiders mirrored these aquatic Hg source signatures with highly positive correlations in δ202Hg between tetragnathids and dragonfly larvae (r2 = 0.90). Further assessment of different spider taxa (i.e., araneids and pisaurids) revealed that differences in prey consumption and foraging strategies resulted in isotope differences, highlighting the importance of spider taxa selection for Hg monitoring efforts.

15.
Environ Pollut ; 328: 121633, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37075922

RESUMEN

The assessment of a cap for remediation of sediments requires long-term monitoring because of the slow migration of contaminants in porous media. In this study, coring and passive sampling tools were used to assess the transport and degradation of polycyclic aromatic hydrocarbons (PAHs) in an amended cap (sand + Organoclay® PM-199) in the Grand Calumet River (Indiana, USA) during four sampling events from 2012 to 2019. Measurements of three PAHs (phenanthrene (Phe), pyrene (Pyr) and benzo[a]pyrene (BaP), representing low, medium, and high molecular weight compounds, respectively) showed a difference of at least two orders of magnitude between bulk concentrations in the native sediments and the remediation cap. Averages of pore water measurements also showed lower levels in the cap respective to the native sediments by a factor of at least 7 for Phe and 3 for Pyr. In addition, between the baseline (BL), which corresponds to observations from 2012 to 2014, and the measurements in 2019, there was a decrease in depth-averaged pore water concentrations of Phe (C2019/CBL=0.20-0.07+0.12 in sediments and 0.27-0.10+0.15 in cap) and Pyr (C2019/CBL=0.47-0.12+0.16 in sediments and 0.71-0.20+0.28 in the cap). In the case of BaP in pore water, no change was observed in native sediments (C2019/CBL=1.0-0.24+0.32) and there was an increase in the cap (C2019/CBL=2.0-0.54+0.72). Inorganic anions and estimates of pore water velocity along with measurements of PAHs were used to model the fate and transport of contaminants. The modeling suggested that degradation of Phe (t1/2=1.12-0.11+0.16 years) and Pyr (t1/2=5.34-1.8+5.3 years) in the cap is faster than migration, thus the cap is expected to be protective of the sediment-water interface indefinitely for these constituents. No degradation was noted in BaP and the contaminant is expected to reach equilibrium in the capping layer over approximately 100 years if there exists sufficient mass of BaP in the sediments and there is no deposition of clean sediment at the surface.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Ríos , Indiana , Agua , Sedimentos Geológicos , Monitoreo del Ambiente
16.
AWWA Water Sci ; 5(6)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38152622

RESUMEN

Adding new unit operations to drinking water treatment systems requires consideration of not only efficacy for its design purpose but also costs, water quality characteristics, impact on overall regulatory compliance, and impact of other treatment unit operations. Here, pilot study results for ion exchange (IX) and granular activated carbon (GAC) are presented for a utility with both per- and polyfluoroalkyl substances (PFAS) and volatile organic contaminant removal needs. Specifically, the impact of upstream air stripping and phosphate addition on PFAS treatment performance was evaluated. Modeling was used to fit the IX and GAC pilot data and predict performance under different scenarios. GAC performance was generally consistent for treating water before or after the air stripper, but the addition of phosphate prior to air-stripping resulted in a loss of 15%-25% capacity for some PFAS on IX media, demonstrating the need to consider the entire treatment train before implementing PFAS removal unit operations.

17.
Environ Toxicol Chem ; 41(3): 499-514, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35113469

RESUMEN

Aquatic ecosystems around the world are contaminated with a wide range of anthropogenic chemicals, including metals and organic pollutants, that originate from point and nonpoint sources. Many of these chemical contaminants have complex environmental cycles, are persistent and bioavailable, can be incorporated into aquatic food webs, and pose a threat to the health of wildlife and humans. Identifying appropriate sentinels that reflect bioavailability is critical to assessing and managing aquatic ecosystems impacted by contaminants. The objective of the present study is to review research on riparian spiders as sentinels of persistent and bioavailable chemical contaminants in aquatic ecosystems. Our review of the literature on riparian spiders as sentinels suggests that significant progress has been made during the last two decades of research. We identified 55 published studies conducted around the world in which riparian spiders (primarily of the families Tetragnathidae, Araneidae, Lycosidae, and Pisauridae) were used as sentinels of chemical contamination of lotic, lentic, and estuarine systems. For several contaminants, such as polychlorinated biphenyls (PCBs), Hg, and Se, it is now clear that riparian spiders are appropriate sentinels. However, many contaminants and factors that could impact chemical concentrations in riparian spiders have not been well characterized. Further study of riparian spiders and their potential role as sentinels is critical because it would allow for development of national-scale programs that utilize riparian spiders as sentinels to monitor chemical contaminants in aquatic ecosystems. A riparian spider sentinel program in the United States would be complementary to existing national sentinel programs, including those for fish and immature dragonflies. Environ Toxicol Chem 2022;41:499-514. © 2021 SETAC.


Asunto(s)
Odonata , Bifenilos Policlorados , Arañas , Contaminantes Químicos del Agua , Animales , Ecosistema , Cadena Alimentaria , Humanos , Bifenilos Policlorados/análisis , Arañas/química , Contaminantes Químicos del Agua/análisis
18.
Environ Toxicol Chem ; 41(4): 1016-1041, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35170813

RESUMEN

With improved analytical techniques, environmental monitoring studies are increasingly able to report the occurrence of tens or hundreds of chemicals per site, making it difficult to identify the most relevant chemicals from a biological standpoint. For the present study, organic chemical occurrence was examined, individually and as mixtures, in the context of potential biological effects. Sediment was collected at 71 Great Lakes (USA/Canada) tributary sites and analyzed for 87 chemicals. Multiple risk-based lines of evidence were used to prioritize chemicals and locations, including comparing sediment concentrations and estimated porewater concentrations with established whole-organism benchmarks (i.e., sediment and water quality criteria and screening values) and with high-throughput toxicity screening data from the US Environmental Protection Agency's ToxCast database, estimating additive effects of chemical mixtures on common ToxCast endpoints, and estimating toxic equivalencies for mixtures of alkylphenols and polycyclic aromatic hydrocarbons (PAHs). This multiple-lines-of-evidence approach enabled the screening of more chemicals, mitigated the uncertainties of individual approaches, and strengthened common conclusions. Collectively, at least one benchmark/screening value was exceeded for 54 of the 87 chemicals, with exceedances observed at all 71 of the monitoring sites. Chemicals with the greatest potential for biological effects, both individually and as mixture components, were bisphenol A, 4-nonylphenol, indole, carbazole, and several PAHs. Potential adverse outcomes based on ToxCast gene targets and putative adverse outcome pathways relevant to individual chemicals and chemical mixtures included tumors, skewed sex ratios, reproductive dysfunction, hepatic steatosis, and early mortality, among others. The results provide a screening-level prioritization of chemicals with the greatest potential for adverse biological effects and an indication of sites where they are most likely to occur. Environ Toxicol Chem 2022;41:1016-1041. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Lagos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
19.
Ecol Appl ; 21(3): 983-90, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21639060

RESUMEN

Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by delta13C and delta15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of 5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process.


Asunto(s)
Agua Dulce/química , Insectos/fisiología , Bifenilos Policlorados/química , Arañas/fisiología , Contaminantes Químicos del Agua/química , Animales , Monitoreo del Ambiente , Cadena Alimentaria , Insectos/química , Conducta Predatoria , South Carolina , Arañas/química
20.
Environ Sci Technol ; 45(9): 3917-24, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21466215

RESUMEN

We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹5N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹5N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.


Asunto(s)
Peces/metabolismo , Agua Dulce/análisis , Sedimentos Geológicos/análisis , Plancton/metabolismo , Bifenilos Policlorados/análisis , Animales , Cadena Alimentaria , Modelos Biológicos , Octanoles/química , Fitoplancton/metabolismo , South Carolina , Agua/química , Zooplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA