Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 184(4): 1152-66, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24655377

RESUMEN

Activin A, a member of the transforming growth factor-ß superfamily, provides pleiotropic regulation of fibrosis and inflammation. We aimed at determining whether selective inhibition of activin A would provide a regenerative benefit. The introduction of activin A into normal muscle increased the expression of inflammatory and muscle atrophy genes Tnf, Tnfrsf12a, Trim63, and Fbxo32 by 3.5-, 10-, 2-, and 4-fold, respectively. The data indicate a sensitive response of muscle to activin A. Two hours after cardiotoxin-induced muscle damage, local activin A protein expression increased by threefold to ninefold. Neutralization of activin A with a specific monoclonal antibody in this muscle injury model decreased the muscle protein levels of lymphotoxin α and Il17a by 32% and 42%, respectively. Muscle histopathological features showed that activin A antibody-treated mice displayed an increase in muscle degradation, with the concomitant 9.2-fold elevation in F4/80-positive cells 3 days after injury. At the same time, the number of Pax7/Myod1-positive cells also increased, indicative of potentiated muscle precursor activation. Ultimately, activin A inhibition resulted in rapid recovery of muscle contractile properties indicated by a restoration of maximum and specific force. In summary, selective inhibition of activin A with a monoclonal antibody in muscle injury leads to the early onset of tissue degradation and subsequent enhanced myogenesis, thereby accelerating muscle repair and functional recovery.


Asunto(s)
Activinas/antagonistas & inhibidores , Contracción Muscular/fisiología , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Animales , Electroporación , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Ratones Endogámicos C57BL , Regeneración/fisiología , Transcriptoma
2.
J Pharmacol Exp Ther ; 349(2): 355-71, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24627466

RESUMEN

Follistatin (FST) is a member of the tissue growth factor ß family and is a secreted glycoprotein that antagonizes many members of the family, including activin A, growth differentiation factor 11, and myostatin. The objective of this study was to explore the use of an engineered follistatin therapeutic created by fusing FST315 lacking heparin binding activity to the N terminus of a murine IgG1 Fc (FST315-ΔHBS-Fc) as a systemic therapeutic agent in models of muscle injury. Systemic administration of this molecule was found to increase body weight and lean muscle mass after weekly administration in normal mice. Subsequently, we tested this agent in several models of muscle injury, which were chosen based on their severity of damage and their ability to reflect clinical settings. FST315-ΔHBS-Fc treatment proved to be a potent inducer of muscle remodeling and regeneration. FST315-ΔHBS-Fc induced improvements in muscle repair after injury/atrophy by modulating the early inflammatory phase allowing for increased macrophage density, and Pax7-positive cells leading to an accelerated restoration of myofibers and muscle function. Collectively, these data demonstrate the benefits of a therapeutically viable form of FST that can be leveraged as an alternate means of ameliorating muscle regeneration.


Asunto(s)
Folistatina/farmacología , Fragmentos Fc de Inmunoglobulinas/genética , Inmunoglobulina G/genética , Músculo Esquelético/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Regeneración , Animales , Folistatina/genética , Ratones , Músculo Esquelético/fisiología , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA