Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 738: 150559, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39182355

RESUMEN

Cancer cells communicate within the tumor microenvironment (TME) through extracellular vesicles (EVs), which act as crucial messengers in intercellular communication, transporting biomolecules to facilitate cancer progression. Ubiquitin-like 3 (UBL3) facilitates protein sorting into small EVs as a post-translational modifier. However, the effect of UBL3 overexpression in EV-mediated protein secretion has not been investigated yet. This study aimed to investigate the effect of UBL3 overexpression in enhancing EV-mediated Achilles protein secretion in MDA-MB-231 (MM) cells by a dual-reporter system integrating Akaluc and Achilles tagged with Ubiquitin where self-cleaving P2A linker connects Akaluc and Achilles. MM cells stably expressing Ubiquitin-Akaluc-P2A-Achilles (Ubi-Aka/Achi) were generated. In our study, both the bioluminescence of Ubiquitin-Akaluc (Ubi-Aka) and the fluorescence of Achilles secretion were observed. The intensity of Ubi-Aka was thirty times lower, while the Achilles was four times lower than the intensity of corresponding cells. The ratio of Ubi-Aka and Achilles in conditioned media (CM) was 7.5. They were also detected within EVs using an EV uptake luciferase assay and fluorescence imaging. To investigate the effect of the UBL3 overexpression in CM, Ubi-Aka/Achi was transiently transfected into MM-UBL3-KO, MM, and MM-Flag-UBL3 cells. We found that the relative fluorescence expression of Achilles in CM of MM-UBL3-KO, MM, and MM-Flag-UBL3 cells was 30 %, 28 %, and 45 %, respectively. These findings demonstrated that UBL3 overexpression enhances EV-mediated Achilles protein secretion in CM of MM cells. Targeting UBL3 could lead to novel therapies for cancer metastasis by reducing the secretion of pro-metastatic proteins, thereby inhibiting disease progression.

2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000460

RESUMEN

Aberrant aggregation of misfolded alpha-synuclein (α-syn), a major pathological hallmark of related neurodegenerative diseases such as Parkinson's disease (PD), can translocate between cells. Ubiquitin-like 3 (UBL3) is a membrane-anchored ubiquitin-fold protein and post-translational modifier. UBL3 promotes protein sorting into small extracellular vesicles (sEVs) and thereby mediates intercellular communication. Our recent studies have shown that α-syn interacts with UBL3 and that this interaction is downregulated after silencing microsomal glutathione S-transferase 3 (MGST3). However, how MGST3 regulates the interaction of α-syn and UBL3 remains unclear. In the present study, we further explored this by overexpressing MGST3. In the split Gaussia luciferase complementation assay, we found that the interaction between α-syn and UBL3 was upregulated by MGST3. While Western blot and RT-qPCR analyses showed that silencing or overexpression of MGST3 did not significantly alter the expression of α-syn and UBL3, the immunocytochemical staining analysis indicated that MGST3 increased the co-localization of α-syn and UBL3. We suggested roles for the anti-oxidative stress function of MGST3 and found that the effect of MGST3 overexpression on the interaction between α-syn with UBL3 was significantly rescued under excess oxidative stress and promoted intracellular α-syn to extracellular transport. In conclusion, our results demonstrate that MGST3 upregulates the interaction between α-syn with UBL3 and promotes the interaction to translocate intracellular α-syn to the extracellular. Overall, our findings provide new insights and ideas for promoting the modulation of UBL3 as a therapeutic agent for the treatment of synucleinopathy-associated neurodegenerative diseases.


Asunto(s)
Glutatión Transferasa , Estrés Oxidativo , Ubiquitinas , alfa-Sinucleína , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Ubiquitinas/metabolismo , Ubiquitinas/genética , Regulación hacia Arriba , Transporte de Proteínas , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Unión Proteica
3.
Biomedicines ; 11(6)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37371780

RESUMEN

Ubiquitin-like 3 (UBL3) acts as a post-translational modification (PTM) factor and regulates protein sorting into small extracellular vesicles (sEVs). sEVs have been reported as vectors for the pathology propagation of neurodegenerative diseases, such as α-synucleinopathies. Alpha-synuclein (α-syn) has been widely studied for its involvement in α-synucleinopathies. However, it is still unknown whether UBL3 interacts with α-syn, and is influenced by drugs or compounds. In this study, we investigated the interaction between UBL3 and α-syn, and any ensuing possible functional and pathological implications. We found that UBL3 can interact with α-syn by the Gaussia princeps based split luciferase complementation assay in cells and immunoprecipitation, while cysteine residues at its C-terminal, which are considered important as PTM factors for UBL3, were not essential for the interaction. The interaction was upregulated by 1-methyl-4-phenylpyridinium exposure. In drug screen results, the interaction was significantly downregulated by the treatment of osimertinib. These results suggest that UBL3 interacts with α-syn in cells and is significantly downregulated by epidermal growth factor receptor (EGFR) pathway inhibitor osimertinib. Therefore, the UBL3 pathway may be a new therapeutic target for α-synucleinopathies in the future.

4.
Front Neuroanat ; 15: 711955, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393728

RESUMEN

Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a "hot" topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA