Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Toxicol ; 90(8): 2037-46, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26404761

RESUMEN

Natural food contaminants such as mycotoxins are an important problem for human health. Deoxynivalenol (DON) is one of the most common mycotoxins detected in cereals and grains. Its toxicological effects mainly concern the immune system and the gastrointestinal tract. This toxin is a potent ribotoxic stressor leading to MAP kinase activation and inflammatory response. DON frequently co-occurs with its glucosylated form, the masked mycotoxin deoxynivalenol-3-ß-D-glucoside (D3G). The toxicity of this later compound remains unknown in mammals. This study aimed to assess the ability of D3G to elicit a ribotoxic stress and to induce intestinal toxicity. The toxicity of D3G and DON (0-10 µM) was studied in vitro, on the human intestinal Caco-2 cell line, and ex vivo, on porcine jejunal explants. First, an in silico analysis revealed that D3G, contrary to DON, was unable to bind to the A-site of the ribosome peptidyl transferase center, the main targets for DON toxicity. Accordingly, D3G did not activate JNK and P38 MAPKs in treated Caco-2 cells and did not alter viability and barrier function on cells, as measured by the trans-epithelial electrical resistance. Treatment of intestinal explants for 4 h with 10 µM DON induced morphological lesions and up-regulated the expression of pro-inflammatory cytokines as measured by qPCR and pan-genomic microarray analysis. By contrast, expression profile of D3G-treated explants was similar to that of controls, and these explants did not show histomorphology alteration. In conclusion, our data demonstrated that glucosylation of DON suppresses its ability to bind to the ribosome and decreases its intestinal toxicity.


Asunto(s)
Contaminación de Alimentos/análisis , Glucósidos/toxicidad , Yeyuno/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Células CACO-2 , Técnicas de Cultivo de Célula , Supervivencia Celular/efectos de los fármacos , Citocinas/genética , Humanos , Yeyuno/metabolismo , Yeyuno/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Peptidil Transferasas/metabolismo , Unión Proteica , Ribosomas/efectos de los fármacos , Ribosomas/enzimología , Porcinos , Transcriptoma/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
2.
Biochim Biophys Acta ; 1797(8): 1500-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20398623

RESUMEN

Sulfide (H2S) is an inhibitor of mitochondrial cytochrome oxidase comparable to cyanide. In this study, poisoning of cells was observed with sulfide concentrations above 20 microM. Sulfide oxidation has been shown to take place in organisms/cells naturally exposed to sulfide. Sulfide is released as a result of metabolism of sulfur containing amino acids. Although in mammals sulfide exposure is not thought to be quantitatively important outside the colonic mucosa, our study shows that a majority of mammalian cells, by means of the mitochondrial sulfide quinone reductase (SQR), avidly consume sulfide as a fuel. The SQR activity was found in mitochondria isolated from mouse kidneys, liver, and heart. We demonstrate the precedence of the SQR over the mitochondrial complex I. This explains why the oxidation of the mineral substrate sulfide takes precedence over the oxidation of other (carbon-based) mitochondrial substrates. Consequently, if sulfide delivery rate remains lower than the SQR activity, cells maintain a non-toxic sulfide concentration (<1 microM) in their external environment. In the colonocyte cell line HT-29, sulfide oxidation provided the first example of reverse electron transfer in living cells, such a transfer increasing sulfide tolerance. However, SQR activity was not detected in brain mitochondria and neuroblastoma cells. Consequently, the neural tissue would be more sensitive to sulfide poisoning. Our data disclose new constraints concerning the emerging signaling role of sulfide.


Asunto(s)
Colon/metabolismo , Sulfuro de Hidrógeno/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Transporte de Electrón , Células HT29 , Humanos , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , Oxidación-Reducción , Quinona Reductasas/genética , Quinona Reductasas/fisiología , Rotenona/farmacología , Transducción de Señal
3.
Amino Acids ; 39(2): 335-47, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20020161

RESUMEN

Hydrogen sulfide (H(2)S) is present in the lumen of the human large intestine at millimolar concentrations. However, the concentration of free (unbound) sulfide is in the micromolar range due to a large capacity of fecal components to bind the sulfide. H(2)S can be produced by the intestinal microbiota from alimentary and endogenous sulfur-containing compounds including amino acids. At excessive concentration, H(2)S is known to severely inhibit cytochrome c oxidase, the terminal oxidase of the mitochondrial electron transport chain, and thus mitochondrial oxygen (O(2)) consumption. However, the concept that sulfide is simply a metabolic troublemaker toward colonic epithelial cells has been challenged by the discovery that micromolar concentration of H(2)S is able to increase the cell respiration and to energize mitochondria allowing these cells to detoxify and to recover energy from luminal sulfide. The main product of H(2)S metabolism by the colonic mucosa is thiosulfate. The enzymatic activities involved in sulfide oxidation by the colonic epithelial cells appear to be sulfide quinone oxidoreductase considered as the first and rate-limiting step followed presumably by the action of sulfur dioxygenase and rhodanese. From clinical studies with human volunteers and experimental works with rodents, it appears that H(2)S can exert mostly pro- but also anti-inflammatory effects on the colonic mucosa. From the available data, it is tempting to propose that imbalance between the luminal concentration of free sulfide and the capacity of colonic epithelial cells to metabolize this compound will result in an impairment of the colonic epithelial cell O(2) consumption with consequences on the process of mucosal inflammation. In addition, endogenously produced sulfide is emerging as a prosecretory neuromodulator and as a relaxant agent toward the intestinal contractibility. Lastly, sulfide has been recently described as an agent involved in nociception in the large intestine although, depending on the experimental design, both pro- and anti-nociceptive effects have been reported.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Mucosa Intestinal/efectos de los fármacos , Intestino Grueso/metabolismo , Sulfuros/metabolismo , Animales , Bacterias/metabolismo , Colitis Ulcerosa/inducido químicamente , Colon/metabolismo , Colon/microbiología , Cistationina gamma-Liasa/metabolismo , Metabolismo Energético , Heces/química , Humanos , Inactivación Metabólica , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/etiología , Intestino Grueso/microbiología , Neurotransmisores/fisiología , Dolor/fisiopatología , Sulfuros/efectos adversos
4.
Sci Rep ; 6: 29105, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381510

RESUMEN

Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 µM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.


Asunto(s)
Bacterias/metabolismo , Biotransformación , Proteínas Quinasas Activadas por Mitógenos/genética , Tricotecenos/toxicidad , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Células CACO-2 , Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Intestinos/química , Intestinos/efectos de los fármacos , Consumo de Oxígeno/genética , Ribosomas/efectos de los fármacos , Ribosomas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Porcinos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Tricotecenos/química
5.
Antioxid Redox Signal ; 17(1): 1-10, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22369066

RESUMEN

AIMS: Sulfide is released in the large intestine lumen by the microbiota and is an inhibitor of mitochondrial respiration and a genotoxic agent in colonocytes when present in excess. Deciphering how colonocytes metabolize sulfide is an important issue. RESULTS: In this study, using the human colonic epithelial HT-29 Glc(-/+) cells, we found that 50 µM sodium hydrogen sulfide represents the threshold of concentration above which respiration is decreased. The capacity of HT-29 Glc(-/+) cells to oxidize lower concentration of sulfide was associated with the expression of transcripts corresponding to the enzymes of the sulfide oxidizing unit (SOU), that is, sulfide quinone reductase (SQR), dioxygenase ethylmalonic encephalopathy, and thiosulfate sulfur transferase (TST). Inhibition of cell O(2) consumption by sulfide was reverted by zinc but not by calcium and iron. When the cells undergo either spontaneous or butyrate-induced differentiation, their capacity to oxidize sulfide was significantly increased. The expression levels of the genes corresponding to the enzymes of the SOU were not increased, whereas increased cellular maximal respiratory capacity and oxygen consumption by the dioxygenase were both measured. In human biopsies recovered from various parts of the large intestine, the three enzymes of the SOU were expressed. INNOVATION: SOU and cell respiratory capacity are crucial for sulfide detoxification in colonocytes. CONCLUSION: Sulfide oxidative capacity in the colonic mucosa is higher in differentiated than in proliferative epithelial cells. The cell respiratory capacity and SOU activity appear to represent major determinants allowing sulfide detoxification in colonic epithelial cells.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuros/metabolismo , Colon , Células HT29 , Humanos , Sulfuro de Hidrógeno/metabolismo , Quinona Reductasas/metabolismo , Tiosulfato Azufretransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA