Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Research (Wash D C) ; 2022: 9862980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198985

RESUMEN

Surface charge density has been demonstrated to be significantly impacted by the dielectric properties of tribomaterials. However, the ambiguous physical mechanism of dielectric manipulated charge behavior still restricts the construction of high-performance tribomaterials. Here, using the atomic force microscopy and Kelvin probe force microscopy, an in situ method was conducted to investigate the contact electrification and charge dynamics on a typical tribomaterial (i.e., BaTiO3/PVDF-TrFE nanocomposite) at nanoscale. Combined with the characterization of triboelectric device at macroscale, it is found that the number of transferred electrons increases with contact force/area and tends to reach saturation under increased friction cycles. The incorporated high permittivity BaTiO3 nanoparticles enhance the capacitance and electron trapping capability of the nanocomposites, efficiently inhibiting the lateral diffusion of electrons and improving the output performance of the triboelectric devices. Exponential decay of the surface potential is observed over monitoring time for all dielectric samples. At high BaTiO3 loadings, more electrons can drift into the bulk and combine with the induced charges on the back electrode, forming a large leakage current and accordingly accelerating the electron dissipation. Hence, the charge trapping/storing and dissipating, as well as the charge attracting properties, should be comprehensively considered in the design of high-performance tribomaterials.

2.
Polymers (Basel) ; 14(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35335491

RESUMEN

With the wide application of energy storage equipment in modern electronic and electrical systems, developing polymer-based dielectric capacitors with high-power density and rapid charge and discharge capabilities has become important. However, there are significant challenges in synergistic optimization of conventional polymer-based composites, specifically in terms of their breakdown and dielectric properties. As the basis of dielectrics, all-organic polymers have become a research hotspot in recent years, showing broad development prospects in the fields of dielectric and energy storage. This paper reviews the research progress of all-organic polymer dielectrics from the perspective of material preparation methods, with emphasis on strategies that enhance both dielectric and energy storage performance. By dividing all-organic polymer dielectrics into linear polymer dielectrics and nonlinear polymer dielectrics, the paper describes the effects of three structures (blending, filling, and multilayer) on the dielectric and energy storage properties of all-organic polymer dielectrics. Based on the above research progress, the energy storage applications of all-organic dielectrics are summarized and their prospects discussed.

3.
Materials (Basel) ; 15(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079476

RESUMEN

Gradually increasing power transmission voltage requires an improved high-voltage capability of polymeric insulating materials. Surface modification emerges as an easily accessible approach in enhancing breakdown and flashover performances due to the widely acknowledged modification of space-charge behaviors. However, as oxidation and fluorination essentially react within a limited depth of 2 µm underneath polymer surfaces, the nature of such bulk space-charge modulation remains a controversial issue, and further investigation is needed to realize enhancement of insulating performance. In this work, the surface oxidation-dependent space-charge accumulation in LDPE film was found to be dominated by an electrode/polymer interfacial barrier, but not by the generation of bulk charge traps. Through quantitative investigation of space-charge distributions along with induced electric field distortion, the functions of surface oxidation on the interfacial barrier of a typical dielectric polymer, LDPE, is discussed and linked to space-charge behaviors. As the mechanism of surface modification on space-charge behaviors is herein proposed, space-charge accumulation can be effectively modified by selecting an appropriate surface modification method, which consequentially benefits breakdown and flashover performances of polymeric insulating films for high-voltage applications.

4.
Sci Rep ; 9(1): 5464, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940877

RESUMEN

Flashover is a crucial issue in both high-voltage engineering and surface physics. It not only challenges the existing theories about its dynamic evolution, but also inhibits the clean energy revolution by limiting the accessible voltage rating of power equipment. It is of significance to elucidate the microscopic process along the interface to improve the flashover performance. In the present study, the synergic effect of adsorbed gas and surface charging is investigated, which reveals a long ignored factor for determining the flashover voltage. Depending on the relative amount of adsorbed gas, the flashover voltage varies, which exhibit different behavior from the bulk breakdown of the same gas. The amount of N2 gas adsorbed on epoxy resin (EP) surface is much larger than that on Al2O3 ceramic surface, corresponding to the observed higher flashover voltage on EP. It is proposed that the adsorbed gas molecules not only modify the local surface charging state via their interaction with the trapped charges, but also capture free electrons due to the distortion of their electronic distribution. Both effects suppress the free path length of electrons in the gas-solid interface. This work explores another possibility to improve the surface flashover performance.

5.
Polymers (Basel) ; 10(9)2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30960937

RESUMEN

Polyimide has excellent electrical, thermal, and mechanical properties and is widely used as a dielectric material in electrical equipment and electronic devices. However, the influencing mechanism of sample thickness on electrical breakdown of polyimide has not been very clear until now. The direct current (DC) electrical breakdown properties of polyimide as a function of thickness were investigated by experiments and simulations of space charge modulated electrical breakdown (SCEB) model and charge transport and molecular displacement modulated (CTMD) model. The experimental results show that the electrical breakdown field decreases with an increase in the sample thickness in the form of an inverse power function, and the inverse power index is 0.324. Trap properties and carrier mobility were also measured for the simulations. Both the simulation results obtained by the SCEB model and the CTMD model have the inverse power forms of breakdown field as a function of thickness with the power indexes of 0.030 and 0.339. The outputs of the CTMD model were closer to the experiments. This indicates that the displacement of a molecular chain with occupied deep traps enlarging the free volume might be a main factor causing the DC electrical breakdown field of polyimide varying with sample thickness.

6.
Polymers (Basel) ; 10(11)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30961132

RESUMEN

Dielectric energy storage capacitors have advantages such as ultra-high power density, extremely fast charge and discharge speed, long service lifespan and are significant for pulsed power system, smart power grid, and power electronics. Polypropylene (PP) is one of the most widely used dielectric materials for dielectric energy storage capacitors. It is of interest to investigate how to improve its electrical breakdown strength by nanodoping and the influencing mechanism of nanodoping on the electrical breakdown properties of polymer nanocomposites. PP/Al2O3 nanocomposite dielectric materials with various weight fraction of nanoparticles are fabricated by melt-blending and hot-pressing methods. Thermally stimulated current, surface potential decay, and dc electrical breakdown experiments show that deep trap properties and associated molecular chain motion are changed by incorporating nanofillers into polymer matrix, resulting in the variations in conductivity and dc electrical breakdown field of nanocomposite dielectrics. Then, a charge transport and molecular displacement modulated electrical breakdown model is utilized to simulate the dc electrical breakdown behavior. It is found that isolated interfacial regions formed in nanocomposite dielectrics at relatively low loadings reduce the effective carrier mobility and strengthen the interaction between molecular chains, hindering the transport of charges and the displacement of molecular chains with occupied deep traps. Accordingly, the electrical breakdown strength is enhanced at relatively low loadings. Interfacial regions may overlap in nanocomposite dielectrics at relatively high loadings so that the effective carrier mobility decreases and the interaction between molecular chains may be weakened. Consequently, the molecular motion is accelerated by electric force, leading to the decrease in electrical breakdown strength. The experiments and simulations reveals that the influence of nanodoping on dc electrical breakdown properties may origin from the changes in the charge transport and molecular displacement characteristics caused by interfacial regions in nanocomposite dielectrics.

7.
Polymers (Basel) ; 9(10)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30965834

RESUMEN

Silicone rubber (SiR) is used as an insulating material for cables installed in a nuclear power plant. Gamma rays irradiated SiR sheets for various periods at temperatures of 145 and 185 °C, and the resultant changes were analyzed by examining complex permittivity spectra and surface potential decay characteristics. Three different processes, namely, instantaneous polarization, electrode polarization due to the accumulation of ions to form double charge layers at dielectric/electrode interfaces, and DC conduction caused by directional hopping of ions, contribute to the complex permittivity. By fitting the spectra to theoretical equations, we can obtain the dielectric constant at high frequencies, concentration and diffusion coefficient of ions and DC conductivity for the pristine and degraded samples. The instantaneous polarization becomes active with an increase of dose and ageing temperature. The thermal expansion coefficient estimated from the temperature dependence of dielectric constant at high frequencies becomes smaller with an increase in dose, which is in good agreement with the experimental results of the swelling ratio. Additionally, trap distributions are calculated from surface potential decay measurements and analyzed to explain the variation in conductivity. Trap energy increases firstly, and then decreases with an increase in dose, leading to a similar change in DC conductivity. It is concluded that generations of both oxidative products and mobile ions, as well as the occurrence of chain scission and crosslinking are simultaneously induced by gamma rays.

8.
Sci Rep ; 6: 32588, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599577

RESUMEN

Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes.

9.
Sci Rep ; 3: 1267, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405281

RESUMEN

There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications.


Asunto(s)
Técnicas Electroquímicas , Gases/análisis , Electrodos , Etilenos/análisis , Hidrógeno/análisis , Iones/química , Nanotubos de Carbono/química , Oxígeno/análisis , Dióxido de Azufre/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA