Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R227-R233, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774307

RESUMEN

Doxorubicin (DOX) is a highly effective antineoplastic agent used in cancer treatment. Unfortunately, clinical use of DOX is limited due to the development of dose-dependent toxicity to cardiac and respiratory (i.e., diaphragm) muscles. After administration, DOX preferentially localizes to the inner mitochondrial membrane, where it promotes cellular toxicity via enhanced mitochondrial reactive oxygen species (ROS) production. Although recent evidence suggests that amelioration of mitochondrial ROS emission preserves cardiorespiratory muscle function following DOX treatment, the mechanisms responsible for this protection remain unknown. Therefore, we tested the hypothesis that DOX-induced mitochondrial ROS production is required to stimulate pathological signaling by the autophagy/lysosomal system (ALS), the ubiquitin-proteasome pathway (UPP), and the unfolded protein response (UPR). Cause and effect were determined by administration of the mitochondria-targeted peptide SS-31 to DOX-treated animals. Interestingly, while SS-31 abrogated aberrant ROS emission in cardiorespiratory muscles of DOX-treated animals, our results revealed muscle-specific regulation of effector pathways. In the heart, SS-31 prevented DOX-induced proteolytic signaling through the ALS and UPP. In contrast, ALS signaling was inhibited by SS-31 in the diaphragm, but the UPP was not affected. UPR signaling was activated in both muscles at eukaryotic translation initiation factor 2α (eIF2α) S51 in the heart and diaphragm of DOX-treated animals and was attenuated with SS-31 treatment in both tissues. However, downstream signaling of eIF2α (activating transcription factor 4 and CCAAT/enhancer-binding protein homologous protein) was diminished in the heart but upregulated in the diaphragm with DOX. Collectively, these results show that DOX-induced ROS production plays distinct roles in the regulation of cardiac and diaphragm muscle proteolysis.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Diafragma/efectos de los fármacos , Doxorrubicina/toxicidad , Cardiopatías/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteolisis/efectos de los fármacos , Factor de Transcripción Activador 4/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cardiotoxicidad , Diafragma/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Cardiopatías/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada/efectos de los fármacos
2.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L678-L689, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483681

RESUMEN

Mitogen-activated protein kinase (MAPK) phosphatase 5 (MKP-5) is a member of the dual-specificity family of protein tyrosine phosphatases that negatively regulates p38 MAPK and the JNK. MKP-5-deficient mice exhibit improved muscle repair and reduced fibrosis in an animal model of muscular dystrophy. Here, we asked whether the effects of MKP-5 on muscle fibrosis extend to other tissues. Using a bleomycin-induced model of pulmonary fibrosis, we found that MKP-5-deficient mice were protected from the development of lung fibrosis, expressed reduced levels of hydroxyproline and fibrogenic genes, and displayed marked polarization towards an M1-macrophage phenotype. We showed that the profibrogenic effects of the transforming growth factor-ß1 (TGF-ß1) were inhibited in MKP-5-deficient lung fibroblasts. MKP-5-deficient fibroblasts exhibited enhanced p38 MAPK activity, impaired Smad3 phosphorylation, increased Smad7 levels, and decreased expression of fibrogenic genes. Myofibroblast differentiation was attenuated in MKP-5-deficient fibroblasts. Finally, we found that MKP-5 expression was increased in idiopathic pulmonary fibrosis (IPF)-derived lung fibroblasts but not in whole IPF lungs. These data suggest that MKP-5 plays an essential role in promoting lung fibrosis. Our results couple MKP-5 with the TGF-ß1 signaling machinery and imply that MKP-5 inhibition may serve as a therapeutic target for human lung fibrosis.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/fisiología , Fibroblastos/patología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Fibrosis Pulmonar/patología , Factor de Crecimiento Transformador beta1/farmacología , Animales , Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Fosfatasas de Especificidad Dual/genética , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosforilación , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Transducción de Señal
3.
J Biol Chem ; 292(9): 3581-3590, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28096466

RESUMEN

The mitogen-activated protein kinases (MAPKs) have been shown to regulate skeletal muscle function. Previously, we showed that MAPK phosphatase-5 (MKP-5) negatively regulates myogenesis and regeneration of skeletal muscle through inhibition of p38 MAPK and c-Jun N-terminal kinase (JNK). However, the identity and contribution of MKP-5-regulated MAPK targets in the control of skeletal muscle function and regenerative myogenesis have not been established. To identify MKP-5-regulated MAPK substrates in skeletal muscle, we performed a global differential phospho-MAPK substrate screen in regenerating skeletal muscles of wild type and MKP-5-deficient mice. We discovered a novel MKP-5-regulated MAPK substrate called guanine nucleotide exchange factor for Rab3A (GRAB) that was hyperphosphorylated on a phospho-MAPK motif in skeletal muscle of MKP-5-deficient mice. GRAB was found to be phosphorylated by JNK on serine 169. Myoblasts overexpressing a phosphorylation-defective mutant of GRAB containing a mutation at Ser-169 to Ala-169 (GRAB-S169A) inhibited the ability of C2C12 myoblasts to differentiate. We found that GRAB phosphorylation at Ser-169 was required for the secretion of the promyogenic cytokine interleukin 6 (IL-6). Consistent with this observation, MKP-5-deficient mice exhibited increased circulating IL-6 expression as compared with wild type mice. Collectively, these data demonstrate a novel mechanism whereby MKP-5-mediated regulation of JNK negatively regulates phosphorylation of GRAB, which subsequently controls secretion of IL-6. These data support the notion that MKP-5 serves as a negative regulator of MAPK-dependent signaling of critical skeletal muscle signaling pathways.


Asunto(s)
Fosfatasas de Especificidad Dual/metabolismo , Regulación Enzimológica de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Interleucina-6/metabolismo , Desarrollo de Músculos , Proteína de Unión al GTP rab3A/metabolismo , Secuencias de Aminoácidos , Animales , Movimiento Celular , Proliferación Celular , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Mutación , Mioblastos/metabolismo , Fosforilación , Proteómica , Regeneración , Serina/química
4.
Semin Cell Dev Biol ; 37: 66-72, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263013

RESUMEN

Protein tyrosine phosphatases (PTPs) play a crucial role in the regulation of human health and it is now clear that PTP dysfunction is causal to a variety of human diseases. Research in the PTP field has accelerated dramatically over the last decade fueled by cutting-edge technologies in genomic and proteomic techniques. This system-wide non-biased approach when applied to the discovery of PTP function has led to the elucidation of new and unanticipated roles for the PTPs. These discoveries, driven by genomic and proteomic approaches, have uncovered novel PTP findings that range from those that describe fundamental cell signaling mechanisms to implications for PTPs as novel therapeutic targets for the treatment of human disease. This review will discuss how new PTP functions have been uncovered through studies that have utilized genomic and proteomic technologies and strategies.


Asunto(s)
Proteínas Tirosina Fosfatasas/metabolismo , Animales , Enfermedad/genética , Genómica , Humanos , Proteínas Tirosina Fosfatasas/genética , Proteómica , Transducción de Señal
5.
J Physiol ; 593(8): 2017-36, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25643692

RESUMEN

Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres.


Asunto(s)
Calpaína/metabolismo , Doxorrubicina/farmacología , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Miocardio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Femenino , Corazón/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/patología , Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
6.
Crit Care Med ; 43(5): e133-42, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25746508

RESUMEN

OBJECTIVES: Mechanical ventilation is a lifesaving measure for patients with respiratory failure. However, prolonged mechanical ventilation results in diaphragm weakness, which contributes to problems in weaning from the ventilator. Therefore, identifying the signaling pathways responsible for mechanical ventilation-induced diaphragm weakness is essential to developing effective countermeasures to combat this important problem. In this regard, the forkhead boxO family of transcription factors is activated in the diaphragm during mechanical ventilation, and forkhead boxO-specific transcription can lead to enhanced proteolysis and muscle protein breakdown. Currently, the role that forkhead boxO activation plays in the development of mechanical ventilation-induced diaphragm weakness remains unknown. DESIGN: This study tested the hypothesis that mechanical ventilation-induced increases in forkhead boxO signaling contribute to ventilator-induced diaphragm weakness. SETTING: University research laboratory. SUBJECTS: Young adult female Sprague-Dawley rats. INTERVENTIONS: Cause and effect was determined by inhibiting the activation of forkhead boxO in the rat diaphragm through the use of a dominant-negative forkhead boxO adeno-associated virus vector delivered directly to the diaphragm. MEASUREMENTS AND MAIN RESULTS: Our results demonstrate that prolonged (12 hr) mechanical ventilation results in a significant decrease in both diaphragm muscle fiber size and diaphragm-specific force production. However, mechanically ventilated animals treated with dominant-negative forkhead boxO showed a significant attenuation of both diaphragm atrophy and contractile dysfunction. In addition, inhibiting forkhead boxO transcription attenuated the mechanical ventilation-induced activation of the ubiquitin-proteasome system, the autophagy/lysosomal system, and caspase-3. CONCLUSIONS: Forkhead boxO is necessary for the activation of key proteolytic systems essential for mechanical ventilation-induced diaphragm atrophy and contractile dysfunction. Collectively, these results suggest that targeting forkhead boxO transcription could be a key therapeutic target to combat ventilator-induced diaphragm dysfunction.


Asunto(s)
Diafragma/fisiopatología , Factores de Transcripción Forkhead/antagonistas & inhibidores , Respiración Artificial/efectos adversos , Animales , Diafragma/patología , Femenino , Hemodinámica , Contracción Muscular , Atrofia Muscular , Proteínas del Tejido Nervioso , Ratas , Ratas Sprague-Dawley , Transducción de Señal
7.
Chronic Illn ; : 17423953241241759, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532693

RESUMEN

OBJECTIVE: The clinical aspects of lung cancer patients are well-studied. However, healthcare charge patterns have yet to be explored through a large-scale representative population-based sample investigating differences by socioeconomic factors and comorbidities. AIM: To identify how comorbidities associated with healthcare charges among lung cancer patients. METHODS: We examined the characteristics of the patient sample and the association between comorbidity status (diabetes, hypertension, or both) and healthcare charge. Multivariate survey linear regression models were used to estimate the association. We also investigated sub-group association through various patient and socioeconomic factors. RESULTS: Of 212,745 lung cancer patients, 68.5% had diabetes and/or hypertension. Hospital charges were higher in the population with comorbidities. The results showed that lung cancer patients with comorbidities had 9.4%, 5.1%, and 12.0% (with diabetes, hypertension, and both, respectively) higher hospital charges than those without comorbidities. In sub-group analysis, Black patients also showed a similar trend across socioeconomic (i.e. household income and primary payer) and racial (i.e. White, Black, Hispanic, and Asian/Pacific Islander) factors. DISCUSSION: Black patients may be significantly financially burdened because of the prevalence of comorbidities and low-income status. More work is required to ensure healthcare equality and promote access to care for the uninsured, low-income, and minority populations because comorbidities common in these populations can create more significant financial barriers.

8.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585797

RESUMEN

Mitochondrial stress within the nervous system can trigger non-cell autonomous responses in peripheral tissues. However, the specific neurons involved and their impact on organismal aging and health have remained incompletely understood. Here, we demonstrate that mitochondrial stress in γ-aminobutyric acid-producing (GABAergic) neurons in Caenorhabditis elegans ( C. elegans ) is sufficient to significantly alter organismal lifespan, stress tolerance, and reproductive capabilities. This mitochondrial stress also leads to significant changes in mitochondrial mass, energy production, and levels of reactive oxygen species (ROS). DAF-16/FoxO activity is enhanced by GABAergic neuronal mitochondrial stress and mediates the induction of these non-cell-autonomous effects. Moreover, our findings indicate that GABA signaling operates within the same pathway as mitochondrial stress in GABAergic neurons, resulting in non-cell-autonomous alterations in organismal stress tolerance and longevity. In summary, these data suggest the crucial role of GABAergic neurons in detecting mitochondrial stress and orchestrating non-cell-autonomous changes throughout the organism.

9.
Front Physiol ; 14: 1133423, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969584

RESUMEN

Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.

10.
Front Endocrinol (Lausanne) ; 14: 1222532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583429

RESUMEN

Background: Physical inactivity increases the risk for metabolic diseases such as obesity and type 2 diabetes. Neuromuscular electrical stimulation (NMES) is an effective method to induce muscle contraction, particularly for populations with physical impairments and/or metabolic diseases. However, its effectiveness to improve glycemic control is unclear. This review aimed to determine the effectiveness of NMES on glycemic control. Methods: Electronic search consisted of MEDLINE (PubMed), EMBASE, Cochrane Library, Google Scholar, and Web of Science to identify studies that investigated the effects of NMES on glycemic control for this systematic review. The meta-analysis consists of the studies designed as randomized controlled trials. Effect sizes were calculated as the standardized mean difference (SMD) and meta-analysis was conducted using a random-effects model. Results: Thirty-five studies met the inclusion criteria for systematic review and of those, nine qualified for the meta-analysis. Existing evidence suggested that NMES effectively improves glycemic control predominantly in middle-aged and elderly population with type 2 diabetes, obesity, and spinal cord injury. The meta-analysis is comprised of 180 participants and reported that NMES intervention lowered fasting blood glucose (SMD: 0.48; 95% CI: 0.17 to 0.78; p=0.002; I²=0%). Additional analysis using the primary measures reported by each study to indicate glycemic control (i.e., OGTT, HOMA-IR, and fasting glucose) also confirmed a significant effect of NMES on improving glycemic control (SMD: 0.41; 95% CI, 0.09 to 0.72; p=0.01; I²=11%). NMES protocol varied across studies and requires standardization. Conclusion: NMES could be considered as a therapeutic strategy to improve glycemic control in populations with physical impairments and/or metabolic disorders. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42020192491.


Asunto(s)
Diabetes Mellitus Tipo 2 , Terapia por Estimulación Eléctrica , Anciano , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/terapia , Estimulación Eléctrica , Terapia por Estimulación Eléctrica/métodos , Servicios de Salud , Obesidad
11.
Membranes (Basel) ; 12(4)2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35448380

RESUMEN

Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.

12.
Nutrients ; 14(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35745205

RESUMEN

The mechanisms connecting obesity with type 2 diabetes, insulin resistance, nonalcoholic fatty liver disease, and cardiovascular diseases remain incompletely understood. The function of MAPK phosphatase-2 (MKP-2), a type 1 dual-specific phosphatase (DUSP) in whole-body metabolism, and how this contributes to the development of diet-induced obesity, type 2 diabetes (T2D), and insulin resistance is largely unknown. We investigated the physiological contribution of MKP-2 in whole-body metabolism and whether MKP-2 is altered in obesity and human fatty liver disease using MKP-2 knockout mice models and human liver tissue derived from fatty liver disease patients. We demonstrate that, for the first time, MKP-2 expression was upregulated in liver tissue in humans with obesity and fatty liver disease and in insulin-responsive tissues in mice with obesity. MKP-2-deficient mice have enhanced p38 MAPK, JNK, and ERK activities in insulin-responsive tissues compared with wild-type mice. MKP-2 deficiency in mice protects against diet-induced obesity and hepatic steatosis and was accompanied by improved glucose homeostasis and insulin sensitivity. Mkp-2-/- mice are resistant to diet-induced obesity owing to reduced food intake and associated lower respiratory exchange ratio. This was associated with enhanced circulating insulin-like growth factor-1 (IGF-1) and stromal cell-derived factor 1 (SDF-1) levels in Mkp-2-/- mice. PTEN, a negative regulator of Akt, was downregulated in livers of Mkp-2-/- mice, resulting in enhanced Akt activity consistent with increased insulin sensitivity. These studies identify a novel role for MKP-2 in the regulation of systemic metabolism and pathophysiology of obesity-induced insulin resistance and fatty liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Animales , Diabetes Mellitus Tipo 2/metabolismo , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual , Hígado Graso/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Obesidad/metabolismo , Proteínas Tirosina Fosfatasas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regulación hacia Arriba
13.
Crit Care Med ; 39(7): 1749-59, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21460706

RESUMEN

BACKGROUND: Mechanical ventilation is a life-saving intervention used to provide adequate pulmonary ventilation in patients suffering from respiratory failure. However, prolonged mechanical ventilation is associated with significant diaphragmatic weakness resulting from both myofiber atrophy and contractile dysfunction. Although several signaling pathways contribute to diaphragm weakness during mechanical ventilation, it is established that oxidative stress is required for diaphragmatic weakness to occur. Therefore, identifying the site(s) of mechanical ventilation- induced reactive oxygen species production in the diaphragm is important. OBJECTIVE: These experiments tested the hypothesis that elevated mitochondrial reactive oxygen species emission is required for mechanical ventilation-induced oxidative stress, atrophy, and contractile dysfunction in the diaphragm. DESIGN: Cause and effect was determined by preventing mechanical ventilation-induced mitochondrial reactive oxygen species emission in the diaphragm of rats using a novel mitochondria-targeted antioxidant (SS-31). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Compared to mechanically ventilated animals treated with saline, animals treated with SS-31 were protected against mechanical ventilation-induced mitochondrial dysfunction, oxidative stress, and protease activation in the diaphragm. Importantly, treatment of animals with the mitochondrial antioxidant also protected the diaphragm against mechanical ventilation-induced myofiber atrophy and contractile dysfunction. CONCLUSIONS: These results reveal that prevention of mechanical ventilation-induced increases in diaphragmatic mitochondrial reactive oxygen species emission protects the diaphragm from mechanical ventilation-induced diaphragmatic weakness. This important new finding indicates that mitochondria are a primary source of reactive oxygen species production in the diaphragm during prolonged mechanical ventilation. These results could lead to the development of a therapeutic intervention to impede mechanical ventilation-induced diaphragmatic weakness.


Asunto(s)
Diafragma/efectos de los fármacos , Mitocondrias Musculares/efectos de los fármacos , Debilidad Muscular/etiología , Oligopéptidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Respiración Artificial/efectos adversos , Actinas/metabolismo , Animales , Calpaína/metabolismo , Caspasa 3/metabolismo , Diafragma/metabolismo , Diafragma/fisiopatología , Diafragma/ultraestructura , Femenino , Peróxido de Hidrógeno/metabolismo , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/fisiología , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/fisiología , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Musculares/metabolismo , Debilidad Muscular/fisiopatología , Debilidad Muscular/prevención & control , Atrofia Muscular/etiología , Atrofia Muscular/fisiopatología , Atrofia Muscular/prevención & control , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/metabolismo
14.
J Cell Signal ; 2(3): 172-180, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557866

RESUMEN

The western diet and overuse of anti-inflammatory medication have caused a great deal of stress on the liver. Obesity and the associated inflammatory state in insulin-responsive tissues result in the release of pro-inflammatory cytokine that activates the stress-responsive MAPKs, p38 MAPK, and JNK. These MAPKs have figured prominently as critical effectors in physiological and pathophysiological hepatic inflammation. In contrast, evidence for a role for ERK1/2 in hepatic inflammation has been less well developed. In this review article, we describe recent insights into the physiology and pathophysiology of the role of stress-responsive MAPKs in hepatic inflammation during obesity and liver injury with a focus on macrophages, hepatocytes and hepatic stellate cells. In response to metabolic stress and liver injury, JNK activation in macrophages and hepatocytes promotes the secretion of inflammatory cytokines and macrophage and neutrophil infiltration. p38 MAPK plays an important role in contributing to the progression of hepatic inflammation in response to various hepatic cellular stresses, although the precise substrates mediating these effects in hepatocytes and hepatic stellate cells remain to be identified. Both JNK and p38 MAPK promotes profibrotic behavior in hepatic stellate cells.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33669288

RESUMEN

Although low socioeconomic status (SES) and decreased muscle strength have been found to be associated with the risk factors of non-alcoholic fatty liver disease (NAFLD), including insulin resistance, obesity, and metabolic syndrome, the associations among SES, muscle strength, and NAFLD are still unclear. We aimed to investigate the combined effect of SES and relative handgrip strength (HGS) on the risk of NAFLD in middle-aged adults. Data from 5272 middle-aged adults who participated in the Korea National Health and Nutrition Examination Surveys (KNHANES) from 2014-2018 were analyzed. NAFLD was defined using the hepatic steatosis index (HSI) > 36 and the comprehensive NAFLD score (CNS) ≥ 40 in the absence of other causes of liver disease. SES was based on a self-reported questionnaire. Overall, individuals with low SES (odds ratio (OR) = 1.703, 95% confidence interval (CI): 1.424-2.037, p < 0.001) or low HGS (OR = 12.161, 95% CI: 9.548-15.488, p < 0.001) had a significantly higher risk of NAFLD. The joint association analysis showed that a low SES combined with a low HGS (OR = 2.479, 95% CI: 1.351-4.549, p = 0.003) further significantly increased the risk of NAFLD when adjusted for all the covariates, compared with individuals with a high SES and a high HGS (OR = 1). The current findings suggest that both low SES and low HGS were independently and synergistically associated with an increased risk of NAFLD in middle-aged Korean adults.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Adulto , Fuerza de la Mano , Humanos , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Encuestas Nutricionales , República de Corea/epidemiología , Factores de Riesgo , Clase Social
16.
Nutrients ; 13(11)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34836195

RESUMEN

The liver plays a key role in whole-body, glucose and lipid homeostasis. Nutritional signals in response to fasting and refeeding regulate hepatic lipid synthesis. It is established that activation of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in response to overnutrition regulates MAPK-dependent pathways that control lipid metabolism in the liver. However, the regulatory mechanisms and the impact of the actions of MKP-1 in hepatic response to fasting remains unclear. We investigated the effect of fasting on the expression of MKP-1 and the impact on hepatic response to feeding. In this study, we demonstrate that fasting stress induced upregulation of hepatic MKP-1 protein levels with a corresponding downregulation of p38 MAPK and JNK phosphorylation in mouse livers. We found that MKP-1-deficient livers are resistant to fasting-induced hepatic steatosis. Hepatic MKP-1 deficiency impaired fasting-induced changes in the levels of key transcription factors involved in the regulation of fatty acid and cholesterol metabolism including Srebf2 and Srebf1c. Mechanistically, MKP-1 negatively regulates Srebf2 expression by attenuating p38 MAPK pathway, suggesting its contribution to the metabolic effects of MKP-1 deficiency in the fasting liver. These findings support the hypothesis that upregulation of MKP-1 is a physiological relevant response and might be beneficial in hepatic lipid utilization during fasting in the liver. Collectively, these data unravel some of the complexity and tissue specific interaction of MKP-1 action in response to changes in nutritional cues, including fasting and excess nutrients.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/metabolismo , Ingestión de Alimentos/fisiología , Ayuno/metabolismo , Hígado/metabolismo , Regulación hacia Arriba/fisiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Ayuno/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Ratones , Modelos Animales , Fosforilación/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Front Immunol ; 12: 790511, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992607

RESUMEN

Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.


Asunto(s)
Cardiomegalia/inmunología , Fosfatasas de Especificidad Dual/deficiencia , Insuficiencia Cardíaca/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Miocardio/patología , Animales , Presión Sanguínea , Cardiomegalia/diagnóstico , Cardiomegalia/patología , Células Cultivadas , Modelos Animales de Enfermedad , Fosfatasas de Especificidad Dual/genética , Ecocardiografía , Fibrosis , Corazón/diagnóstico por imagen , Insuficiencia Cardíaca/patología , Humanos , Interleucina-4/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Fosforilación/inmunología , Cultivo Primario de Células , Remodelación Ventricular/inmunología
18.
Am J Physiol Heart Circ Physiol ; 299(5): H1515-24, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20833957

RESUMEN

Doxorubicin (Dox) is an antitumor agent used in cancer treatment, but its clinical use is limited due to cardiotoxicity. Although exercise training can defend against Dox-mediated cardiac damage, the means for this cardioprotection remain unknown. To investigate the mechanism(s) responsible for exercise training-induced cardioprotection against Dox-mediated cardiotoxicity, we tested a two-pronged hypothesis: 1) exercise training protects against Dox-induced cardiotoxicity by preventing Dox-mediated mitochondrial damage/dysfunction and increased oxidative stress and 2) exercise training-induced cardiac expression of the inducible isoform of the 70-kDa heat shock protein 72 (HSP72) is essential to achieve exercise training-induced cardioprotection against Dox toxicity. Animals were randomly assigned to sedentary or exercise groups and paired with either placebo or Dox treatment (i.e., 20 mg/kg body wt ip Dox hydrochloride 24 h before euthanasia). Dox administration resulted in cardiac mitochondrial dysfunction, activation of proteases, and apoptosis. Exercise training increased cardiac antioxidant enzymes and HSP72 protein abundance and protected cardiac myocytes against Dox-induced mitochondrial damage, protease activation, and apoptosis. To determine whether exercise-induced expression of HSP72 in the heart is required for this cardioprotection, we utilized an innovative experimental strategy that successfully prevented exercise-induced increases in myocardial HSP72 levels. However, prevention of exercise-induced increases in myocardial HSP72 did not eliminate the exercise-induced cardioprotective phenotype that is resistant to Dox-mediated injury. Our results indicate that exercise training protects against the detrimental side effects of Dox in cardiac myocytes, in part, by protecting mitochondria against Dox-mediated damage. However, this exercise-induced cardioprotection is independent of myocardial HSP72 levels. Finally, our data are consistent with the concept that increases in cardiac mitochondrial antioxidant enzymes may contribute to exercise-induced cardioprotection.


Asunto(s)
Cardiotoxinas/efectos adversos , Doxorrubicina/efectos adversos , Proteínas del Choque Térmico HSP72/metabolismo , Mitocondrias Cardíacas/fisiología , Enfermedades Mitocondriales/inducido químicamente , Enfermedades Mitocondriales/prevención & control , Condicionamiento Físico Animal/fisiología , Animales , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Cardiotoxinas/farmacología , Doxorrubicina/farmacología , Peróxidos Lipídicos/metabolismo , Masculino , Mitocondrias Cardíacas/efectos de los fármacos , Enfermedades Mitocondriales/metabolismo , Modelos Animales , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
19.
Med Hypotheses ; 134: 109423, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31627121

RESUMEN

Exercise intolerance is a hallmark of symptoms in patients with heart failure. In addition to reduced cardiac output, a series of impairments in pulmonary and vascular systems leads to decreases in oxygen delivery and availability in locomotor muscles. This contributes to exercise intolerance in heart failure. The oxy-hemoglobin dissociation curve is essentially a graph illustrating the relationship between the partial pressure of oxygen (PO2, X-axis) and oxygen saturation (SaO2, Y-axis) of hemoglobin. The rightward shift of the curve indicates that hemoglobin's affinity for oxygen decreases and in turn, it may allow the release of more oxygen to tissues. In the present study, we discuss the pathophysiological impairment, which causes exercise intolerance in heart failure patients and suggest a strategy to improve exercise capacity without altering cardiac output via modulating the oxy-hemoglobin dissociation curve.


Asunto(s)
Tolerancia al Ejercicio , Insuficiencia Cardíaca/fisiopatología , Hemoglobinas/metabolismo , Oxígeno/sangre , Oxihemoglobinas/metabolismo , Regulación Alostérica , Gasto Cardíaco , Femenino , Insuficiencia Cardíaca/sangre , Humanos , Hipoxia/etiología , Hipoxia/fisiopatología , Masculino , Modelos Cardiovasculares , Músculo Esquelético/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
20.
Sci Signal ; 13(646)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843541

RESUMEN

The mitogen-activated protein kinase (MAPK) phosphatases (MKPs) have been considered "undruggable," but their position as regulators of the MAPKs makes them promising therapeutic targets. MKP5 has been suggested as a potential target for the treatment of dystrophic muscle disease. Here, we identified an inhibitor of MKP5 using a p38α MAPK-derived, phosphopeptide-based small-molecule screen. We solved the structure of MKP5 in complex with this inhibitor, which revealed a previously undescribed allosteric binding pocket. Binding of the inhibitor to this pocket collapsed the MKP5 active site and was predicted to limit MAPK binding. Treatment with the inhibitor recapitulated the phenotype of MKP5 deficiency, resulting in activation of p38 MAPK and JNK. We demonstrated that MKP5 was required for TGF-ß1 signaling in muscle and that the inhibitor blocked TGF-ß1-mediated Smad2 phosphorylation. TGF-ß1 pathway antagonism has been proposed for the treatment of dystrophic muscle disease. Thus, allosteric inhibition of MKP5 represents a therapeutic strategy against dystrophic muscle disease.


Asunto(s)
Fosfatasas de Especificidad Dual/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Sitio Alostérico/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Fosfatasas de Especificidad Dual/química , Fosfatasas de Especificidad Dual/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Cinética , Ratones , Ratones Noqueados , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/química , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Unión Proteica/efectos de los fármacos , Homología de Secuencia de Aminoácido , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA