Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Genetica ; 146(2): 211-226, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29441472

RESUMEN

Many peninsulas in the temperate zone played an important role as refugia of various flora and fauna, and the southern Korean Peninsula also served as a refugium for many small mammals in East Asia during the Pleistocene. The Asian lesser white-toothed shrew, Crocidura shantungensis, is a widely distributed species in East Asia, and is an appropriate model organism for exploring the role of the Korean Peninsula as a refugium of small mammals. Here, we investigated phylogenetic relationships and genetic diversity based on the entire sequence of the mitochondrial cytochrome b gene (1140 bp). A Bayesian tree for 98 haplotypes detected in 228 C. shantungensis specimens from East Asia revealed the presence of three major groups with at least 5 subgroups. Most haplotypes were distributed according to their geographic proximity. Pairwise FST's and analysis of molecular variance (AMOVA) revealed a high degree of genetic differentiation and variance among regions as well as among populations within region, implying little gene flow among local populations. Genetic evidence from South Korean islands, Jeju-do Island of South Korea, and Taiwan leads us to reject the hypothesis of recent population expansion. We observed unique island-type genetic characteristics consistent with geographic isolation and resultant genetic drift. Phylogeographic inference, together with estimates of genetic differentiation and diversity, suggest that the southern most part the Korean Peninsula, including offshore islands, played an important role as a refugium for C. shantungensis during the Pleistocene. However, the presence of several refugia on the mainland of northeast Asia is also proposed.


Asunto(s)
Variación Genética , Musarañas/genética , Animales , Citocromos b/genética , Haplotipos , Corea (Geográfico) , Filogeografía , Musarañas/clasificación
2.
Zoolog Sci ; 35(3): 249-259, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29882500

RESUMEN

The raccoon dog (Nyctereutes procyonoides) is endemic to East Asia but has been introduced in Europe. Its high adaptability enabled its rapid colonization of European countries, where population growth has been raising concerns regarding ecosystem disturbance and the spread of zoonotic diseases. The genetic diversity and structure of endemic, source, and introduced populations from seven locations across South Korea, China, Russian Far East, Finland (spread to Finland after introduction to European part of Russia from Russian Far East), Vietnam, and Japan (Honshu and Hokkaido) were examined based on 16 microsatellite loci. Two major and significantly different (FST = 0.236) genetic clusters were found: continental (South Korean, Chinese, Russian, Finnish, and Vietnamese) and island (Japanese) populations. The continental raccoon dog population comprises three subpopulations (Chinese_Russian_Finnish, South Korean, and Vietnamese) and the Japanese population consists of Honshu and Hokkaido subpopulations. The genetic diversity and geographic structure of raccoon dogs in East Asia has been influenced by natural barriers to gene flow and reveals a typical central-marginal trend in genetic diversity (continental vs. island, and central vs. marginal or source vs. introduced within continental populations). The detected differences between continental and island populations agree with those reported in previous studies that considered these populations as different species.


Asunto(s)
Distribución Animal , Variación Genética , Perros Mapache/genética , Animales , ADN/genética , Asia Oriental , Genotipo
3.
Mol Phylogenet Evol ; 112: 148-157, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476494

RESUMEN

We investigated the species diversity and phylogeography of the Northeast Asian brown frogs allied to Rana dybowskii (the R. dybowskii species complex: R. dybowskii, R. pirica, and R. uenoi) using four mitochondrial and three nuclear loci. Phylogenetic analyses confirmed the existence of three distinct species in this complex; using extensive molecular data, we confirm the validity of Rana uenoi recognized as a distinct species, and infer R. dybowskii and R. pirica to be sister species. Also, we included populations from previously unsampled regions in Northeast China, and identified them to be R. dybowskii. While many species in Northeast Asia diverged due to Pleistocene glaciation, divergence-dating analyses inferred older, Miocene speciation in the R. dybowskii species complex. Ancestral area reconstruction identified the orogenic movement of the Changbai Mountain Range and the opening of the Sea of Japan/East Sea being major events influencing allopatric speciation.


Asunto(s)
Biodiversidad , Variación Genética , Filogeografía , Ranidae/clasificación , Ranidae/genética , Animales , Asia , Secuencia de Bases , Teorema de Bayes , Núcleo Celular/genética , China , ADN Mitocondrial/genética , Redes Reguladoras de Genes , Japón , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie , Factores de Tiempo
4.
Syst Biol ; 65(5): 824-42, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27288482

RESUMEN

True frogs of the genus Rana are widely used as model organisms in studies of development, genetics, physiology, ecology, behavior, and evolution. Comparative studies among the more than 100 species of Rana rely on an understanding of the evolutionary history and patterns of diversification of the group. We estimate a well-resolved, time-calibrated phylogeny from sequences of six nuclear and three mitochondrial loci sampled from most species of Rana, and use that phylogeny to clarify the group's diversification and global biogeography. Our analyses consistently support an "Out of Asia" pattern with two independent dispersals of Rana from East Asia to North America via Beringian land bridges. The more species-rich lineage of New World Rana appears to have experienced a rapid radiation following its colonization of the New World, especially with its expansion into montane and tropical areas of Mexico, Central America, and South America. In contrast, Old World Rana exhibit different trajectories of diversification; diversification in the Old World began very slowly and later underwent a distinct increase in speciation rate around 29-18 Ma. Net diversification is associated with environmental changes and especially intensive tectonic movements along the Asian margin from the Oligocene to early Miocene. Our phylogeny further suggests that previous classifications were misled by morphological homoplasy and plesiomorphic color patterns, as well as a reliance primarily on mitochondrial genes. We provide a phylogenetic taxonomy based on analyses of multiple nuclear and mitochondrial gene loci. [Amphibians; biogeography; diversification rate; Holarctic; transcontinental dispersal.


Asunto(s)
Filogenia , Ranidae/clasificación , Américas , Animales , Asia , Teorema de Bayes , Asia Oriental , Ranidae/genética , Análisis de Secuencia de ADN
5.
Mol Phylogenet Evol ; 97: 69-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26748269

RESUMEN

The Oriental fire-bellied toad (Bombina orientalis) is a commonly used study organism, but knowledge of its evolutionary history is incomplete. We analyze sequence data from four genetic markers (mtDNA genes encoding cytochrome c oxidase subunit I, cytochrome b, and 12S-16S rRNA; nuDNA gene encoding recombination activating gene 2) from 188 individuals across its range in Northeast Asia to elucidate phylogeographic patterns and to identify the historic events that shaped its evolutionary history. Although morphologically similar across its range, B. orientalis exhibits phylogeographic structure, which we infer was shaped by geologic, climatic, and anthropogenic events. Phylogenetic and divergence-dating analyses recover four genetically distinct groups of B. orientalis: Lineage 1-Shandong Province and Beijing (China); Lineage 2-Bukhan Mountain (Korea); Lineage 3-Russia, Northeast China, and northern South Korea; and Lineage 4-South Korea. Lineage 2 was previously unknown. Additionally, we discover an area of secondary contact on the Korean Peninsula, and infer a single dispersal event as the origin of the insular Jeju population. Skyline plots estimate different population histories for the four lineages: Lineages 1 and 2 experienced population decreases, Lineage 3 remained stable, while Lineage 4 experienced a sharp increase during the Holocene. The timing of the population expansion of Lineage 4 coincides with the advent of rice cultivation, which may have facilitated the increase in population size by providing additional breeding habitat.


Asunto(s)
Agricultura/historia , Anuros/clasificación , Anuros/genética , Actividades Humanas/historia , Filogenia , Animales , Núcleo Celular/genética , China , Citocromos b/genética , ADN Mitocondrial/genética , Ecosistema , Complejo IV de Transporte de Electrones/genética , Historia Antigua , Oryza , Filogeografía , Dinámica Poblacional , ARN Ribosómico/genética , República de Corea , Federación de Rusia
6.
BMC Genet ; 16: 100, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26282405

RESUMEN

BACKGROUND: The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution, and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer, C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite loci for Siberian roe deer from ten localities in Asia. RESULTS: Moderate levels of genetic diversity (H(E) = 0.522 to 0.628) were found in all populations except in Jeju Island, South Korea, where the diversity was lowest (H(E) = 0.386). Western populations showed relatively low genetic diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east), 2.81 (west), mean F(ST) = 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East, Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and Jeju Island population. Genetic analyses including AMOVA (F(RT) = 0.200), Barrier and PCA also supported genetic differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an ongoing migration that may facilitate genetic admixture at the border areas between two groups. CONCLUSIONS: Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia, showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in conservation of local populations of Siberian roe deer.


Asunto(s)
Ciervos/genética , Variación Genética , Genética de Población , Animales , Análisis por Conglomerados , Evolución Molecular , Flujo Génico , Geografía , Repeticiones de Microsatélite/genética , Siberia
7.
BMC Genet ; 15: 85, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25034725

RESUMEN

BACKGROUND: Wild boar, Sus scrofa, is an extant wild ancestor of the domestic pig as an agro-economically important mammal. Wild boar has a worldwide distribution with its geographic origin in Southeast Asia, but genetic diversity and genetic structure of wild boar in East Asia are poorly understood. To characterize the pattern and amount of genetic variation and population structure of wild boar in East Asia, we genotyped and analyzed microsatellite loci for a total of 238 wild boar specimens from ten locations across six countries in East and Southeast Asia. RESULTS: Our data indicated that wild boar populations in East Asia are genetically diverse and structured, showing a significant correlation of genetic distance with geographic distance and implying a low level of gene flow at a regional scale. Bayesian-based clustering analysis was indicative of seven inferred genetic clusters in which wild boars in East Asia are geographically structured. The level of genetic diversity was relatively high in wild boars from Southeast Asia, compared with those from Northeast Asia. This gradient pattern of genetic diversity is consistent with an assumed ancestral population of wild boar in Southeast Asia. Genetic evidences from a relationship tree and structure analysis suggest that wild boar in Jeju Island, South Korea have a distinct genetic background from those in mainland Korea. CONCLUSIONS: Our results reveal a diverse pattern of genetic diversity and the existence of genetic differentiation among wild boar populations inhabiting East Asia. This study highlights the potential contribution of genetic variation of wild boar to the high genetic diversity of local domestic pigs during domestication in East Asia.


Asunto(s)
Genética de Población , Repeticiones de Microsatélite , Sus scrofa/genética , Animales , Teorema de Bayes , Análisis por Conglomerados , Asia Oriental , Flujo Génico , Variación Genética , Análisis de Secuencia de ADN
8.
Mol Biol Rep ; 41(11): 7339-47, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25086619

RESUMEN

The Mongolian racerunner (Eremias argus) is a small lacertid lizard species, and its distribution range encompasses the Korean Peninsula, Mongolia, China and Russia. Eremias argus is widespread, but populations on the Korean Peninsula are small and declining, provoking concerns that genetic diversity is being lost. This species is currently listed under the Protection of Wild Fauna and Flora Act in South Korea. In this study, nine novel microsatellites for E. argus were developed with a biotin-enrichment method and used to understand its population genetic structure and delineate conservation units on the Korean Peninsula. Overall, low intrapopulation genetic diversity was observed (mean number of alleles per locus = 2.463; mean H E = 0.398) from 10 populations investigated (n = 110). Two populations (among five with n≥ 10) showed an excess of heterozygosity expected under HWE relative to that expected at mutation-drift equilibrium, indicating severe reduction in population sizes. With only a few exceptions, the overall genetic differentiation among populations was substantial with the high levels of pairwise-F ST (0.006-0.746) and -R ST (0.034-0.940) values. The results of Bayesian STRUCTURE analysis showed that E. argus populations on the Korean Peninsula were most likely partitioned into three genetic clusters. Taken all together, such low levels of gene flow and strong genetic structuring have critical implications for the conservation of this endangered species and its management.


Asunto(s)
Distribución Animal , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Variación Genética , Genética de Población , Lagartos/genética , Animales , Teorema de Bayes , Flujo Génico , Frecuencia de los Genes , Tamización de Portadores Genéticos , Repeticiones de Microsatélite/genética , República de Corea
9.
Animals (Basel) ; 14(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612363

RESUMEN

The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.

10.
Mol Ecol ; 22(16): 4196-4209, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23802586

RESUMEN

Population declines and extinctions of amphibians have been attributed to the chytrid fungus Batrachochytrium dendrobatidis (Bd), especially one globally emerging recombinant lineage ('Bd-GPL'). We used PCR assays that target the ribosomal internal transcribed spacer region (ITS) of Bd to determine the prevalence and genetic diversity of Bd in South Korea, where Bd is widely distributed but is not known to cause morbidity or mortality in wild populations. We isolated Korean Bd strains from native amphibians with low infection loads and compared them to known worldwide Bd strains using 19 polymorphic SNP and microsatellite loci. Bd prevalence ranged between 12.5 and 48.0%, in 11 of 17 native Korean species, and 24.7% in the introduced bullfrog Lithobates catesbeianus. Based on ITS sequence variation, 47 of the 50 identified Korean haplotypes formed a group closely associated with a native Brazilian Bd lineage, separated from the Bd-GPL lineage. However, multilocus genotyping of three Korean Bd isolates revealed strong divergence from both Bd-GPL and the native Brazilian Bd lineages. Thus, the ITS region resolves genotypes that diverge from Bd-GPL but otherwise generates ambiguous phylogenies. Our results point to the presence of highly diversified endemic strains of Bd across Asian amphibian species. The rarity of Bd-GPL-associated haplotypes suggests that either this lineage was introduced into Korea only recently or Bd-GPL has been outcompeted by native Bd strains. Our results highlight the need to consider possible complex interactions among native Bd lineages, Bd-GPL and their associated amphibian hosts when assessing the spread and impact of Bd-GPL on worldwide amphibian populations.


Asunto(s)
Animales Salvajes/microbiología , Anuros/microbiología , Quitridiomicetos/patogenicidad , Micosis/veterinaria , Urodelos/microbiología , Anfibios/microbiología , Animales , Quitridiomicetos/genética , Quitridiomicetos/aislamiento & purificación , Quitridiomicetos/fisiología , ADN Espaciador Ribosómico/análisis , ADN Espaciador Ribosómico/genética , Variación Genética , Haplotipos , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Micosis/microbiología , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple/genética , República de Corea , Análisis de Secuencia de ADN
11.
Mitochondrial DNA B Resour ; 8(7): 742-745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435316

RESUMEN

Rana coreana is a brown frog species native to the Korean Peninsula. We characterized the complete mitochondrial genome of the species. The mitochondrial genome sequence of R. coreana is 22,262 bp and comprises 13 protein-coding genes, two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and two control regions (CRs). The CR duplication and gene organization were identical to those observed in Rana kunyuensis and Rana amurensis. A total of 13 protein-coding genes were used to examine the phylogenetic relationships between this species and the genus Rana. R. coreana living on the Korean Peninsula, formed a cluster with R. kunyuensis and R. amurensis, with R. coreana showing the closest phylogenetic affinity for R. kunyuensis.

12.
Mol Ecol ; 21(4): 960-73, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22221323

RESUMEN

Speciation remains a fundamental issue in biology. Herein, we report an investigation into speciation in the Rana chensinensis species complex using DNA sequence data from one mitochondrial and five nuclear genes. A phylogenetic analysis of the data revealed four major clades in the complex, and each of them was found to likely represent a species, including one cryptic species. Ecological niche models were generated from 19 climatic variables for three of the four major clades, which were represented by widespread sampling, including R. chensinensis, Rana kukunoris and the potential cryptic species. Each clade is associated with a unique ecological unit, and this indicates that ecological divergence probably drove speciation. Ecological divergence is likely related to the late Cenozoic orogenesis of the Qinghai-Tibetan Plateau. In addition, gene flow between species was detected but only in peripheral portions of the ranges of the four major clades, thus likely had little influence on the speciation processes. Discordances between mitochondrial and nuclear genes were also found; the nominal species, R. chensinensis, contains multiple maternal clades, suggesting potential mitochondrial introgression between R. chensinensis and R. kukunoris.


Asunto(s)
Especiación Genética , Filogenia , Ranidae/clasificación , Animales , Teorema de Bayes , Núcleo Celular/genética , China , ADN Mitocondrial/genética , Ecosistema , Flujo Génico , Genética de Población , Modelos Biológicos , Datos de Secuencia Molecular , Ranidae/genética , Análisis de Secuencia de ADN
13.
Zootaxa ; 5174(1): 25-45, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36095413

RESUMEN

Glandirana rugosa is known to include several geographic groups differing in sex chromosomes, and has been proven to be paraphyletic in mitochondrial phylogeny with respect to G. susurra. By analyzing genetic and morphological variation in a large number of individuals of Glandirana, we studied their taxonomic relationships. A mitochondrial DNA phylogeny, with the G. tientaiensis as outgroup, revealed two major lineages containing respectively (1) the East group of G. rugosa, G. susurra, and the Central and Southeast-Kyushu groups of G. rugosa; and (2) G. emeljanovi, and the North and West groups of G. rugosa. In contrast, in a nuclear DNA phylogeny based on SNP data, lineages of (1) G. susurra and East group, and (2) the remaining groups of G. rugosa and G. emeljanovi, were split, indicating a distinct status of the East group among G. rugosa. In adult morphology, there were only minor differences between the East group and the remaining groups of G. rugosa, but in larvae, the East group had significantly more sparse skin glands than the others. The exact type locality of G. rugosa is most probably in western Japan, not including the range of the East group. From these results, we describe the East group as a new species, G. reliquia, distinct from the remaining groups of G. rugosa. The new species with sexually homomorphic chromosomes is thought to represent a basic stock of Japanese Glandirana, which existed far before G. rugosa originated.


Asunto(s)
Ranidae , Cromosomas Sexuales , Animales , ADN Mitocondrial/genética , Filogenia , Ranidae/genética , Cromosomas Sexuales/genética
14.
Mitochondrial DNA B Resour ; 7(3): 498-500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311211

RESUMEN

In this study, we use a specimen from wild-caught individual to determine the complete mitochondrial genome of the Amur soft-shelled turtle (Pelodiscus maackii). The complete mitogenome of P. maackii has 16,258 bp in length and consists of 13 protein-coding genes (PCGs), 22 tRNAs, two rRNAs, and one control region. The arrangement of genes of P. maackii is identical with previously reported mitogenomes in the family Trionychoidea. According to our result, the ML tree for the phylogenetic reconstruction revealed that the individuals used in present study is closely related with the previously reported sequences of P. sinensis (AY962573 and MG431983) in p-distance 0.7% and 2.5%.

15.
PLoS One ; 17(7): e0270217, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35793341

RESUMEN

Small populations of the endangered species are more vulnerable to extinction and hence require periodic genetic monitoring to establish and revisit the conservation strategies. The Amur leopard is critically endangered with about 100 individuals in the wild. In this study, we developed a simple and cost-effective noninvasive genetic monitoring protocol for Amur leopards. Also, we investigated the impact of fecal sample's age, storage, and collection season on microsatellite genotyping success and data quality. We identified 89 leopard scats out of the 342 fecal samples collected from Land of the Leopard between 2014-2019. Microsatellite genotyping using 12 markers optimized in 3 multiplex PCR reactions reveals presence of at least 24 leopard individuals (18 males and 6 females). There was a significant difference in the success rate of genotyping depending on the time from feces deposition to collection (p = 0.014, Fisher's exact test), with better genotyping success for samples having <2 weeks of environmental exposure. Amur leopard genetic diversity was found low (Ho- 0.33, HE- 0.35, and NA- 2.57) with no visible population substructure and recent bottleneck signature. Although a historical bottleneck footprint was observed. Mitochondrial DNA diversity was also found low with two haplotypes differing by a point mutation reported in 1,769 bp of investigated sequence covering parts of cytochrome b gene (846 bp), NADH-5 gene (611 bp) and control region (312 bp). We recommend periodic genetic monitoring of wild Amur leopards following the proposed methodology to achieve cost effectiveness and efficiency.


Asunto(s)
Panthera , Animales , Análisis Costo-Beneficio , Especies en Peligro de Extinción , Asia Oriental , Femenino , Variación Genética , Masculino , Panthera/genética
16.
J Hered ; 102(2): 165-74, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21325020

RESUMEN

The Asiatic black bear is one of the most endangered mammals in South Korea owing to population declines resulting from human exploitation and habitat fragmentation. To restore the black bear population in South Korea, 27 bear cubs from North Korea and Russian Far East (Primorsky Krai) were imported and released into Jirisan National Park, a reservoir of the largest wild population in South Korea, in 2004. To monitor the success of this reintroduction, the genetic diversity and population structure of the reintroduced black bears were measured using both mitochondrial and nuclear DNA markers. Mitochondrial D-loop region DNA sequences (615 bp) of 43 Japanese black bears from previous study and 14 Southeast Asian black bears in this study were employed to obtain phylogenetic inference of the reintroduced black bears. The mitochondrial phylogeny indicated Asiatic black bear populations from Russian Far East and North Korea form a single evolutionary unit distinct from populations from Japan and Southeast Asia. Mean expected heterozygosity (H(E)) across 16 microsatellite loci was 0.648 for Russian and 0.676 for North Korean populations. There was a moderate but significant level of microsatellite differentiation (F(ST) = 0.063) between black bears from the 2 source areas. In addition, genetic evidences revealed that 2 populations are represented as diverging groups, with lingering genetic admixture among individuals of 2 source populations. Relatedness analysis based on genetic markers indicated several discrepancies with the pedigree records. Implication of the phylogenetic and genetic evidences on long-term management of Asiatic black bears in South Korea is discussed.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Repeticiones de Microsatélite/genética , Ursidae/genética , Animales , Genética de Población , Genotipo , Mitocondrias/genética , Datos de Secuencia Molecular , Filogenia , República de Corea
17.
Animals (Basel) ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466897

RESUMEN

Closely related individuals from different areas can see their morphologies change based on differences between clades, but also ecological variables such as the island effect or sympatry. This is the case of salamanders, which have adapted to a broad range of ecological niches, ranging from underground dwellers in xeric landscape to tropical arboreal habitats. On the Korean Peninsula, salamanders from the Hynobius clade are widespread on the mainland and islands, with several partially sympatric clades and candidate species. Currently, seven lineages have been identified based on mtDNA, four of them matching named species and three others for which the species status remains untested. While the morphology of Korean Hynobius is known to be variable between genetically segregated clades, we hypothesise that (1) the candidate species are morphologically different, and that (2) the island effect and (3) the sympatric status have significant impacts on the morphology of individuals within the genus. Here we measured 329 Hynobius salamanders from all seven clades, in areas of sympatry and allopatry, and on islands and on the mainland (Graphical Abstract A). We determined that the island effect had a significant impact on the morphology of the genus, with mainland individuals generally displaying a broader range of morphology than islandic individuals (Graphical Abstract B). We also determined that sympatry had an impact on morphology, with the sizes of individuals from clades in sympatric areas diverging from each other (Graphical Abstract C). Finally, we demonstrated that all seven clades have significantly different morphologies, and we described the three candidate species that had already been isolated based on mtDNA and microsatellite data: Hynobius notialis sp. nov., Hynobius geojeensis sp. nov. and Hynobius perplicatus sp. nov. We conclude that looking at morphology alone would be misleading about the true diversity of Hynobius species, and species in general, because of the island and patry effects.

18.
Ecol Evol ; 11(21): 14669-14688, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765133

RESUMEN

Climate change is one of the major threats to global amphibian diversity, and consequently, the species distribution is expected to shift considerably in the future. Therefore, predicting such shifts is important to guide conservation and management plans. Here, we used eight independent environmental variables and four representative concentration pathways (RCPs) to model the current and future habitat suitability of the Korean clawed salamander (Onychodactylus koreanus) and then defined the dispersal limits of the species using cost distance analysis. The current habitat suitability model generated using the maximum entropy algorithm was highly consistent with the known distribution of the species and had good predictive performance. Projections onto years 2050 and 2070 predicted a drastic decrease of habitat suitability across all RCPs, with up to 90.1% decrease of suitable area and 98.0% decrease of optimal area predicted from binary presence grids. The models also predicted a northeastward shift of habitat suitability toward high-elevation areas and a persistence of suitability along the central ridge of the Baekdudaegan Range. This area is likely to become a climatic refugium for the species in the future, and it should be considered as an area of conservation priority. Therefore, we urge further ecological studies and population monitoring to be conducted across the range of O. koreanus. The vulnerability to rapid climate change is also shared by other congeneric species, and assessing the impacts of climate change on these other species is needed to better conserve this unique lineage of salamanders.

19.
Mitochondrial DNA B Resour ; 6(2): 689-690, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33763550

RESUMEN

We determined the complete mitochondrial genome of Rana uenoi (Anura: Ranidae) for the first time. The whole sequences were 17,370 bp and included 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. The gene arrangement was completely identical to those observed from other Ranidae species. We used 11 protein-coding genes to examine the phylogenetic placement of this species in the genus Rana. Rana dybowskii was the closest sister species to R. uenoi. The clade of R. uenoi and R. dybowskii formed a cluster with Rana huarensis, which had a sister relationship with the group of Rana amurensis, Rana coreana, and Rana kunyuensis.

20.
Sci Rep ; 11(1): 9193, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33911092

RESUMEN

The Korean Peninsula, located at the southern tip of Northeast Asia, has never been covered by ice sheets and was a temperate refugium during the Pleistocene. Karsenia koreana, the sole Asian plethodontid salamander species, occurs only on the southern half of the Korean Peninsula and is thought to have found various climatic refugia. Despite its phylogenetic and biogeographic importance, no population-level genetic analysis has been performed on this species. Here we study the population genetic structure of K. koreana using mitochondrial and microsatellite loci to understand the recent historical dispersion process that shaped its current distribution. Overall, the genetic distance between populations correlated well with the spatial distance, and the genetic structure among populations showed signs of a unilateral northward expansion from a southernmost refugium population. Given the distinct genetic structure formed among the populations, the level of historical gene flow among populations appears to have been very low. As the estimated effective population size of K. koreana was also small, these results suggest that the small, restricted populations of K. koreana are extremely vulnerable to environmental changes that may require high levels of genetic diversity to cope with. Thus, special management strategies are needed to preserve these remnant populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA