RESUMEN
RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homolog thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme.
Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/inmunología , ARN Helicasas DEAD-box/inmunología , Gammaherpesvirinae/inmunología , Evasión Inmune/genética , ARN Viral/inmunología , Proteínas Virales/inmunología , Amidas/metabolismo , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Línea Celular , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Activación Enzimática , Fibroblastos/enzimología , Fibroblastos/inmunología , Fibroblastos/virología , Gammaherpesvirinae/genética , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Ratones , Imitación Molecular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , Receptores Inmunológicos , Transducción de Señal , Proteínas Virales/genéticaRESUMEN
Activation of pattern recognition receptors and proper regulation of downstream signaling are crucial for host innate immune response. Upon infection, the NF-κB and interferon regulatory factors (IRF) are often simultaneously activated to defeat invading pathogens. Mechanisms concerning differential activation of NF-κB and IRF are not well understood. Here we report that a MAVS variant inhibits interferon (IFN) induction, while enabling NF-κB activation. Employing herpesviral proteins that selectively activate NF-κB signaling, we discovered that a MAVS variant of ~50 kDa, thus designated MAVS50, was produced from internal translation initiation. MAVS50 preferentially interacts with TRAF2 and TRAF6, and activates NF-κB. By contrast, MAVS50 inhibits the IRF activation and suppresses IFN induction. Biochemical analysis showed that MAVS50, exposing a degenerate TRAF-binding motif within its N-terminus, effectively competed with full-length MAVS for recruiting TRAF2 and TRAF6. Ablation of the TRAF-binding motif of MAVS50 impaired its inhibitory effect on IRF activation and IFN induction. These results collectively identify a new means by which signaling events is differentially regulated via exposing key internally embedded interaction motifs, implying a more ubiquitous regulatory role of truncated proteins arose from internal translation and other related mechanisms.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Secuencia de Aminoácidos , Humanos , Inductores de Interferón/inmunología , Interferones/metabolismo , FN-kappa B/metabolismo , Unión Proteica/fisiologíaRESUMEN
NF-κB transcription factors regulate the expression of hundreds of genes primarily involved in immune responses. Signaling events leading to NF-κB activation constitute a major antiviral immune pathway. To replicate and persist within their hosts, viruses have evolved diverse strategies to evade and exploit cellular NF-κB immune signaling cascades for their benefit. We summarize recent studies concerning viral manipulation of the NF-κB signaling pathway downstream of pattern recognition receptors. Signal transduction mediated by pattern recognition receptors is a research frontier for both infectious disease and innate immunology.
Asunto(s)
FN-kappa B/metabolismo , Virus/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Virus/inmunología , Virus/patogenicidadRESUMEN
Endoplasmic reticulum (ER)-Golgi membrane transport and autophagy are intersecting trafficking pathways that are tightly regulated and crucial for homeostasis, development and disease. Here, we identify UVRAG, a beclin-1-binding autophagic factor, as a phosphatidylinositol-3-phosphate (PtdIns(3)P)-binding protein that depends on PtdIns(3)P for its ER localization. We further show that UVRAG interacts with RINT-1, and acts as an integral component of the RINT-1-containing ER tethering complex, which couples phosphoinositide metabolism to COPI-vesicle tethering. Displacement or knockdown of UVRAG profoundly disrupted COPI cargo transfer to the ER and Golgi integrity. Intriguingly, autophagy caused the dissociation of UVRAG from the ER tether, which in turn worked in concert with the Bif-1-beclin-1-PI(3)KC3 complex to mobilize Atg9 translocation for autophagosome formation. These findings identify a regulatory mechanism that coordinates Golgi-ER retrograde and autophagy-related vesicular trafficking events through physical and functional interactions between UVRAG, phosphoinositide and their regulatory factors, thereby ensuring spatiotemporal fidelity of membrane trafficking and maintenance of organelle homeostasis.