Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neural Eng ; 20(4)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37467742

RESUMEN

Objective.In studying the spatial coding mechanism of visual evoked potentials, it is significant to construct a model that shows the relationship between steady-state visual evoked potential (SSVEP) responses to the local and global visual field stimulation. In order to investigate whether SSVEPs produced by sub-region stimulation can predict that produced by joint region stimulation, a sub-region combination scheme for spatial coding in a high-frequency SSVEP-based brain-computer interface (BCI) is developed innovatively.Approach.An annular visual field is divided equally into eight sub-regions. The 60 Hz visual stimuli in different sub-regions and joint regions are presented separately to participants. The SSVEP produced by the sub-region stimulation is superimposed to simulate the SSVEP produced by the joint region stimulation with different spatial combinations. A four-class spatially-coded BCI paradigm is used to evaluate the simulated classification performance, and the performance ranking of all simulated SSVEPs is obtained. Six representative stimulus patterns from two performance levels and three stimulus areas are applied to the online BCI system for each participant.Main results.The experimental result shows that the proposed scheme can implement a spatially-coded visual BCI system and realize satisfactory performance with imperceptible flicker. Offline analysis indicates that the classification accuracy and information transfer rate (ITR) are 89.69 ± 8.75% and 24.35 ± 7.09 bits min-1with 3 s data length under the 3/8 stimulus area. The online BCI system reaches an average classification accuracy of 87.50 ± 9.13% with 3 s data length, resulting in an ITR of 22.48 ± 6.71 bits min-1under the 3/8 stimulus area.Significance.This study proves the feasibility of using the sub-region's response to predict the joint region's response. It has the potential to extend to other frequency bands and lays a foundation for future research on more complex spatial coding methods.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Humanos , Electroencefalografía/métodos , Campos Visuales , Estimulación Luminosa/métodos
2.
J Neural Eng ; 20(1)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36669202

RESUMEN

Objective.Existing steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) struggle to balance user experience and system performance. This study proposed an individualized space and phase modulation method to code imperceptible flickers at 60 Hz towards a user-friendly SSVEP-based BCI with high performance.Approach.The individualized customization of visual stimulation took the subject-to-subject variability in cortex geometry into account. An annulus global-stimulation was divided into local-stimulations of eight annular sectors and presented to subjects separately. The local-stimulation SSVEPs were superimposed to simulate global-stimulation SSVEPs with 47space and phase coding combinations. A four-class phase-coded BCI diagram was used to evaluate the simulated classification performance. The performance ranking of all simulated global-stimulation SSVEPs were obtained and three performance levels (optimal, medium, worst) of individualized modulation groups were searched for each subject. The standard-modulation group conforming to the V1 'cruciform' geometry and the non-modulation group were involved as controls. A four-target phase-coded BCI system with SSVEPs at 60 Hz was implemented with the five modulation groups and questionnaires were used to evaluate user experience.Main results.The proposed individualized space and phase modulation method effectively modulated the SSVEP intensity without affecting the user experience. The online BCI system using the 60 Hz stimuli achieved mean information transfer rates of 52.8 ± 1.9 bits min-1, 16.8 ± 2.4 bits min-1, and 42.4 ± 3.0 bits min-1with individualized optimal-modulation, individualized worst-modulation, and non-modulation groups, respectively.Significance.Structural and functional characteristics of the human visual cortex were exploited to enhance the response intensity of SSVEPs at 60 Hz, resulting in a high-performance BCI system with good user experience. This study has important theoretical significance and application value for promoting the development of the visual BCI technology.


Asunto(s)
Interfaces Cerebro-Computador , Corteza Visual , Humanos , Potenciales Evocados Visuales , Electroencefalografía/métodos , Estimulación Luminosa/métodos
3.
J Neural Eng ; 20(2)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36827704

RESUMEN

Objective.The traditional uniform flickering stimulation pattern shows strong steady-state visual evoked potential (SSVEP) responses and poor user experience with intense flicker perception. To achieve a balance between performance and comfort in SSVEP-based brain-computer interface (BCI) systems, this study proposed a new grid stimulation pattern with reduced stimulation area and low spatial contrast.Approach.A spatial contrast scanning experiment was conducted first to clarify the relationship between the SSVEP characteristics and the signs and values of spatial contrast. Four stimulation patterns were involved in the experiment: the ON and OFF grid stimulation patterns that separately activated the positive or negative contrast information processing pathways, the ON-OFF grid stimulation pattern that simultaneously activated both pathways, and the uniform flickering stimulation pattern that served as a control group. The contrast-intensity and contrast-user experience curves were obtained for each stimulation pattern. Accordingly, the optimized stimulation schemes with low spatial contrast (the ON-50% grid stimulus, the OFF-50% grid stimulus, and the Flicker-30% stimulus) were applied in a 12-target and a 40-target BCI speller and compared with the traditional uniform flickering stimulus (the Flicker-500% stimulus) in the evaluation of BCI performance and subjective experience.Main results.The OFF-50% grid stimulus showed comparable online performance (12-target, 2 s: 69.87 ± 0.74 vs. 69.76 ± 0.58 bits min-1, 40-target, 4 s: 57.02 ± 2.53 vs. 60.79 ± 1.08 bits min-1) and improved user experience (better comfortable level, weaker flicker perception and higher preference level) compared to the traditional Flicker-500% stimulus in both multi-targets BCI spellers.Significance.Selective activation of the negative contrast information processing pathway using the new OFF-50% grid stimulus evoked robust SSVEP responses. On this basis, high-performance and user-friendly SSVEP-based BCIs have been developed and implemented, which has important theoretical significance and application value in promoting the development of the visual BCI technology.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Percepción , Algoritmos
4.
Microsyst Nanoeng ; 8: 50, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572780

RESUMEN

Flexible multichannel electrode arrays (fMEAs) with multiple filaments can be flexibly implanted in various patterns. It is necessary to develop a method for implanting the fMEA in different locations and at various depths based on the recording demands. This study proposed a strategy for reducing the microelectrode volume with integrated packaging. An implantation system was developed specifically for semiautomatic distributed implantation. The feasibility and convenience of the fMEA and implantation platform were verified in rodents. The acute and chronic recording results provied the effectiveness of the packaging and implantation methods. These methods could provide a novel strategy for developing fMEAs with more filaments and recording sites to measure functional interactions across multiple brain regions.

5.
J Neural Eng ; 18(5)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34544060

RESUMEN

Objective.Low-frequency steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) systems with high performance are prone to cause visual discomfort and fatigue. High-frequency SSVEP-based BCI systems can alleviate the discomfort, but always obtain lower performance. This study optimized the spatial properties of a proposed checkerboard-like visual stimulus toward high-performance and user-friendly SSVEP-based BCI systems.Approach.On the one hand, two checkerboard-like stimuli with distinct spatial contrasts (the black- and white-background) were designed to balance the tradeoff between BCI performance and user experience and compared with the traditional flickering stimulus. On the other hand, the impacts of the spatial frequency of the new checkerboard-like stimulus on the flicker perception and the intensity of the elicited SSVEP were clarified. The SSVEP-based BCI systems were implemented based on the checkerboard-like stimuli under low-frequency and high-frequency conditions. The user experience for each stimulation pattern was estimated by questionnaires for subjective evaluation.Main results.The comparison results indicate that the black-background checkerboard-like stimulus with an optimized spatial frequency achieved comparable performance and enhanced visual comfort compared with the flickering stimulus. Furthermore, the online nine-target BCI system using the black-background checkerboard-like stimuli achieved averaged information transfer rates of 124.0 ± 2.3 and 109.0 ± 20.4 bits min-1with low-frequency and high-frequency stimulation respectively.Significance.The new checkerboard-like stimuli with optimized properties show superiority of system performance and user experience in implementing SSVEP-based BCI, which will promote its practical applications in communication and control.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Electroencefalografía , Estimulación Luminosa
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3031-3034, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018644

RESUMEN

The mapping of visual space onto human striate cortex allows the location of stimuli to affect the scalp distributions of electroencephalogram (EEG). To clarify the relationship between the characteristics of elicited high-frequency steady-state visual evoked potentials (SSVEPs) and the polar angle of stimulus, this study divided the annulus into eight symmetrical annular sectors (i.e., octants) as separate visual stimuli. For both 30 Hz and 60 Hz, the response intensity and classification accuracy indicated that the annular sectors in the lower visual field evoked stronger responses than those in the upper visual field. This paper also evaluated the phase differences between SSVEPs at specific polar angles and found clear individual differences across subjects. These findings may lead to inspirations for the design of new space coding methods for the SSVEP-based brain-computer interfaces (BCIs).


Asunto(s)
Interfaces Cerebro-Computador , Corteza Visual , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Estimulación Luminosa
7.
Sci Rep ; 8(1): 14708, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279463

RESUMEN

A high-speed steady-state visual evoked potentials (SSVEP)-based brain-computer interface (BCI) system using dry EEG electrodes was demonstrated in this study. The dry electrode was fabricated in our laboratory. It was designed as claw-like structure with a diameter of 14 mm, featuring 8 small fingers of 6 mm length and 2 mm diameter. The structure and elasticity can help the fingers pass through the hair and contact the scalp when the electrode is placed on head. The electrode was capable of recording spontaneous EEG and evoked brain activities such as SSVEP with high signal-to-noise ratio. This study implemented a twelve-class SSVEP-based BCI system with eight electrodes embedded in a headband. Subjects also completed a comfort level questionnaire with the dry electrodes. Using a preprocessing algorithm of filter bank analysis (FBA) and a classification algorithm based on task-related component analysis (TRCA), the average classification accuracy of eleven participants was 93.2% using 1-second-long SSVEPs, leading to an average information transfer rate (ITR) of 92.35 bits/min. All subjects did not report obvious discomfort with the dry electrodes. This result represented the highest communication speed in the dry-electrode based BCI systems. The proposed system could provide a comfortable user experience and a stable control method for developing practical BCIs.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/instrumentación , Potenciales Evocados Visuales/fisiología , Procesamiento de Señales Asistido por Computador/instrumentación , Adulto , Algoritmos , Electrodos , Femenino , Voluntarios Sanos , Humanos , Masculino , Factores de Tiempo , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA