Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 50(14): 8349-8362, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35871290

RESUMEN

Replication is a crucial cellular process. Replicative helicases unwind DNA providing the template strand to the polymerase and promoting replication fork progression. Helicases are multi-domain proteins which use an ATPase domain to couple ATP hydrolysis with translocation, however the role that the other domains might have during translocation remains elusive. Here, we studied the unexplored self-loading helicases called Reps, present in Staphylococcus aureus pathogenicity islands (SaPIs). Our cryoEM structures of the PriRep5 from SaPI5 (3.3 Å), the Rep1 from SaPI1 (3.9 Å) and Rep1-DNA complex (3.1Å) showed that in both Reps, the C-terminal domain (CTD) undergoes two distinct movements respect the ATPase domain. We experimentally demonstrate both in vitro and in vivo that SaPI-encoded Reps need key amino acids involved in the staircase mechanism of translocation. Additionally, we demonstrate that the CTD's presence is necessary for the maintenance of full ATPase and helicase activities. We speculate that this high interdomain flexibility couples Rep's activities as initiators and as helicases.


Asunto(s)
Adenosina Trifosfatasas , ADN Helicasas , Staphylococcus aureus , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , ADN/química , ADN Helicasas/metabolismo , Replicación del ADN , Islas Genómicas , Staphylococcus aureus/enzimología , Staphylococcus aureus/genética
2.
Mol Cell ; 49(5): 947-58, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23333307

RESUMEN

dUTPases (Duts) have emerged as promising regulatory molecules controlling relevant cellular processes. However, the mechanism underlying this regulatory function remains enigmatic. Using staphylococcal pathogenicity island (SaPI) repression as a model, we report here that phage Duts induce the transfer of SaPI-encoded virulence factors by switching between active (dUTP-bound) and inactive (apo state) conformations, a conversion catalyzed by their intrinsic dUTPase activity. Crystallographic and mutagenic analyses demonstrate that binding to dUTP reorders the C-terminal motif V of the phage-encoded Duts, rendering these proteins into the active conformation required for SaPI derepression. By contrast, the conversion to the apo state conformation by hydrolysis of the bound dUTP generates a protein that is unable to induce the SaPI cycle. Because none of the requirements involving Duts in SaPI transfer are exclusive to the phage-encoded proteins, we propose that Duts are widespread cellular regulators acting in a manner analogous to the eukaryotic G proteins.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Islas Genómicas/genética , Pirofosfatasas/genética , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Proteínas Virales/genética , Sitios de Unión , Proteínas de Unión al GTP/genética , Modelos Moleculares , Estructura Terciaria de Proteína , Pirofosfatasas/metabolismo , Staphylococcus aureus/metabolismo , Especificidad por Sustrato , Proteínas Virales/metabolismo , Virulencia/genética
4.
Nucleic Acids Res ; 45(11): 6507-6519, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28475766

RESUMEN

DNA-single strand annealing proteins (SSAPs) are recombinases frequently encoded in the genome of many bacteriophages. As SSAPs can promote homologous recombination among DNA substrates with an important degree of divergence, these enzymes are involved both in DNA repair and in the generation of phage mosaicisms. Here, analysing Sak and Sak4 as representatives of two different families of SSAPs present in phages infecting the clinically relevant bacterium Staphylococcus aureus, we demonstrate for the first time that these enzymes are absolutely required for phage reproduction. Deletion of the genes encoding these enzymes significantly reduced phage replication and the generation of infectious particles. Complementation studies revealed that these enzymes are required both in the donor (after prophage induction) and in the recipient strain (for infection). Moreover, our results indicated that to perform their function SSAPs require the activity of their cognate single strand binding (Ssb) proteins. Mutational studies demonstrated that the Ssb proteins are also required for phage replication, both in the donor and recipient strain. In summary, our results expand the functions attributed to the Sak and Sak4 proteins, and demonstrate that both SSAPs and Ssb proteins are essential for the life cycle of temperate staphylococcal phages.


Asunto(s)
Bacteriófagos/fisiología , Recombinasas/fisiología , Staphylococcus aureus/virología , Proteínas Virales/fisiología , Replicación Viral , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Mutación
5.
PLoS Genet ; 11(10): e1005609, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26495848

RESUMEN

Virus satellites are widespread subcellular entities, present both in eukaryotic and in prokaryotic cells. Their modus vivendi involves parasitism of the life cycle of their inducing helper viruses, which assures their transmission to a new host. However, the evolutionary and ecological implications of satellites on helper viruses remain unclear. Here, using staphylococcal pathogenicity islands (SaPIs) as a model of virus satellites, we experimentally show that helper viruses rapidly evolve resistance to their virus satellites, preventing SaPI proliferation, and SaPIs in turn can readily evolve to overcome phage resistance. Genomic analyses of both these experimentally evolved strains as well as naturally occurring bacteriophages suggest that the SaPIs drive the coexistence of multiple alleles of the phage-coded SaPI inducing genes, as well as sometimes selecting for the absence of the SaPI depressing genes. We report similar (accidental) evolution of resistance to SaPIs in laboratory phages used for Staphylococcus aureus typing and also obtain the same qualitative results in both experimental evolution and phylogenetic studies of Enterococcus faecalis phages and their satellites viruses. In summary, our results suggest that helper and satellite viruses undergo rapid coevolution, which is likely to play a key role in the evolution and ecology of the viruses as well as their prokaryotic hosts.


Asunto(s)
Bacteriófagos/genética , Evolución Biológica , Virus Helper/genética , Virus Satélites/genética , Replicación del ADN/genética , Islas Genómicas/genética , Filogenia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/virología , Proteínas Virales/genética
6.
Mol Microbiol ; 85(5): 833-45, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22742067

RESUMEN

Staphylococcus aureus pathogenicity islands (SaPIs) are a group of related 15-17 kb mobile genetic elements that commonly carry genes for superantigen toxins and other virulence factors. The key feature of their mobility is the induction of SaPI excision and replication by certain phages and their efficient encapsidation into specific small-headed phage-like infectious particles. Previous work demonstrated that chromosomal integration depends on the SaPI-encoded recombinase, Int. However, although involved in the process, Int alone was not sufficient to mediate efficient SaPI excision from chromosomal sites, and we expected that SaPI excision would involve an Xis function, which could be encoded by a helper phage or by the SaPI, itself. Here we report that the latter is the case. In vivo recombination assays with plasmids in Escherichia coli demonstrate that SaPI-coded Xis is absolutely required for recombination between the SaPI att(L) and att(R) sites, and that both sites, as well as their flanking SaPI sequences, are required for SaPI excision. Mutational analysis reveals that Xis is essential for efficient horizontal SaPI transfer to a recipient strain. Finally, we show that the master regulator of the SaPI life cycle, Stl, blocks expression of int and xis by binding to inverted repeats present in the promoter region, thus controlling SaPI excision.


Asunto(s)
Islas Genómicas/genética , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Análisis Mutacional de ADN , Reacción en Cadena en Tiempo Real de la Polimerasa , Recombinación Genética/genética , Staphylococcus aureus/metabolismo
7.
Elife ; 92020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32945259

RESUMEN

Mobile genetic elements (MGEs) are a rich source of new enzymes, and conversely, understanding the activities of MGE-encoded proteins can elucidate MGE function. Here, we biochemically characterize three proteins encoded by a conserved operon carried by the Staphylococcal Cassette Chromosome (SCCmec), an MGE that confers methicillin resistance to Staphylococcus aureus, creating MRSA strains. The first of these proteins, CCPol, is an active A-family DNA polymerase. The middle protein, MP, binds tightly to CCPol and confers upon it the ability to synthesize DNA primers de novo. The CCPol-MP complex is therefore a unique primase-polymerase enzyme unrelated to either known primase family. The third protein, Cch2, is a 3'-to-5' helicase. Cch2 additionally binds specifically to a dsDNA sequence downstream of its gene that is also a preferred initiation site for priming by CCPol-MP. Taken together, our results suggest that this is a functional replication module for SCCmec.


Asunto(s)
Proteínas Bacterianas/genética , ADN Helicasas/genética , ADN Primasa/genética , Resistencia a la Meticilina/genética , Staphylococcus aureus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Primasa/química , ADN Primasa/metabolismo , Alineación de Secuencia , Staphylococcus aureus/enzimología
8.
Structure ; 26(8): 1144-1150.e3, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30017563

RESUMEN

Methicillin-resistant Staphylococcus aureus is a global public health threat. Methicillin resistance is carried on mobile genetic elements belonging to the staphylococcal cassette chromosome (SCC) family. The molecular mechanisms that SCC elements exploit for stable maintenance and for horizontal transfer are poorly understood. Previously, we identified several conserved SCC genes with putative functions in DNA replication, including lp1413, which we found encodes a single-stranded DNA (ssDNA)-binding protein. We report here the 2.18 Å crystal structure of LP1413, which shows that it adopts a winged helix-turn-helix fold rather than the OB-fold normally seen in replication-related ssDNA-binding proteins. However, conserved residues form a hydrophobic pocket not normally found in winged helix-turn-helix domains. LP1413 also has a conserved but disordered C-terminal tail. As deletion of the tail does not significantly affect cooperative binding to ssDNA, we propose that it mediates interactions with other proteins. LP1413 could play several different roles in vivo.


Asunto(s)
Proteínas Bacterianas/química , ADN Bacteriano/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Staphylococcus aureus Resistente a Meticilina/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Cristalografía por Rayos X , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Resistencia a la Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
9.
Elife ; 62017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28826473

RESUMEN

Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature's most fascinating subcellular parasites.


Asunto(s)
Transferencia de Gen Horizontal , Islas Genómicas , Secuencias Repetitivas Esparcidas , Staphylococcus aureus/genética , Staphylococcus aureus/virología , Transducción Genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Parásitos , Proteínas Represoras/metabolismo , Fagos de Staphylococcus , Proteínas Virales/metabolismo
10.
Nat Struct Mol Biol ; 23(10): 891-898, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27571176

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a public-health threat worldwide. Although the mobile genomic island responsible for this phenotype, staphylococcal cassette chromosome (SCC), has been thought to be nonreplicative, we predicted DNA-replication-related functions for some of the conserved proteins encoded by SCC. We show that one of these, Cch, is homologous to the self-loading initiator helicases of an unrelated family of genomic islands, that it is an active 3'-to-5' helicase and that the adjacent ORF encodes a single-stranded DNA-binding protein. Our 2.9-Å crystal structure of intact Cch shows that it forms a hexameric ring. Cch, like the archaeal and eukaryotic MCM-family replicative helicases, belongs to the pre-sensor II insert clade of AAA+ ATPases. Additionally, we found that SCC elements are part of a broader family of mobile elements, all of which encode a replication initiator upstream of their recombinases. Replication after excision would enhance the efficiency of horizontal gene transfer.


Asunto(s)
Proteínas Bacterianas/genética , Cromosomas Bacterianos/genética , ADN Helicasas/genética , Staphylococcus aureus Resistente a Meticilina/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Staphylococcus aureus Resistente a Meticilina/química , Staphylococcus aureus Resistente a Meticilina/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA