Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(20): 3622-3641, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37863029

RESUMEN

Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.


Asunto(s)
ADN , G-Cuádruplex , Humanos , ADN/genética , ADN/química , ARN/genética , ARN/química
2.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36075220

RESUMEN

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Asunto(s)
ADN Cruciforme , Nylons , ADN/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Humanos , Conformación de Ácido Nucleico
3.
Nucleic Acids Res ; 52(8): 4361-4374, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38381906

RESUMEN

CANVAS is a recently characterized repeat expansion disease, most commonly caused by homozygous expansions of an intronic (A2G3)n repeat in the RFC1 gene. There are a multitude of repeat motifs found in the human population at this locus, some of which are pathogenic and others benign. In this study, we conducted structure-functional analyses of the pathogenic (A2G3)n and nonpathogenic (A4G)n repeats. We found that the pathogenic, but not the nonpathogenic, repeat presents a potent, orientation-dependent impediment to DNA polymerization in vitro. The pattern of the polymerization blockage is consistent with triplex or quadruplex formation in the presence of magnesium or potassium ions, respectively. Chemical probing of both repeats in vitro reveals triplex H-DNA formation by only the pathogenic repeat. Consistently, bioinformatic analysis of S1-END-seq data from human cell lines shows preferential H-DNA formation genome-wide by (A2G3)n motifs over (A4G)n motifs. Finally, the pathogenic, but not the nonpathogenic, repeat stalls replication fork progression in yeast and human cells. We hypothesize that the CANVAS-causing (A2G3)n repeat represents a challenge to genome stability by folding into alternative DNA structures that stall DNA replication.


Asunto(s)
Ataxia Cerebelosa , Expansión de las Repeticiones de ADN , Replicación del ADN , Enfermedades del Sistema Nervioso Periférico , Enfermedades Vestibulares , Humanos , ADN/metabolismo , ADN/química , ADN/genética , Expansión de las Repeticiones de ADN/genética , Replicación del ADN/genética , Conformación de Ácido Nucleico , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Ataxia Cerebelosa/genética , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades Vestibulares/genética
4.
PLoS Genet ; 19(1): e1010590, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36701275

RESUMEN

Although homologous recombination between transposable elements can drive genomic evolution in yeast by facilitating chromosomal rearrangements, the details of the underlying mechanisms are not fully clarified. In the genome of the yeast Saccharomyces cerevisiae, the most common class of transposon is the retrotransposon Ty1. Here, we explored how Cas9-induced double-strand breaks (DSBs) directed to Ty1 elements produce genomic alterations in this yeast species. Following Cas9 induction, we observed a significant elevation of chromosome rearrangements such as deletions, duplications and translocations. In addition, we found elevated rates of mitotic recombination, resulting in loss of heterozygosity. Using Southern analysis coupled with short- and long-read DNA sequencing, we revealed important features of recombination induced in retrotransposons. Almost all of the chromosomal rearrangements reflect the repair of DSBs at Ty1 elements by non-allelic homologous recombination; clustered Ty elements were hotspots for chromosome rearrangements. In contrast, a large proportion (about three-fourths) of the allelic mitotic recombination events have breakpoints in unique sequences. Our analysis suggests that some of the latter events reflect extensive processing of the broken ends produced in the Ty element that extend into unique sequences resulting in break-induced replication. Finally, we found that haploid and diploid strain have different preferences for the pathways used to repair double-stranded DNA breaks. Our findings demonstrate the importance of DNA lesions in retrotransposons in driving genome evolution.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Retroelementos/genética , Aberraciones Cromosómicas , Recombinación Homóloga/genética
5.
Nucleic Acids Res ; 51(16): 8532-8549, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37216608

RESUMEN

Friedreich's ataxia (FRDA) is caused by expansions of GAA•TTC repeats in the first intron of the human FXN gene that occur during both intergenerational transmissions and in somatic cells. Here we describe an experimental system to analyze large-scale repeat expansions in cultured human cells. It employs a shuttle plasmid that can replicate from the SV40 origin in human cells or be stably maintained in S. cerevisiae utilizing ARS4-CEN6. It also contains a selectable cassette allowing us to detect repeat expansions that accumulated in human cells upon plasmid transformation into yeast. We indeed observed massive expansions of GAA•TTC repeats, making it the first genetically tractable experimental system to study large-scale repeat expansions in human cells. Further, GAA•TTC repeats stall replication fork progression, while the frequency of repeat expansions appears to depend on proteins implicated in replication fork stalling, reversal, and restart. Locked nucleic acid (LNA)-DNA mixmer oligonucleotides and peptide nucleic acid (PNA) oligomers, which interfere with triplex formation at GAA•TTC repeats in vitro, prevented the expansion of these repeats in human cells. We hypothesize, therefore, that triplex formation by GAA•TTC repeats stall replication fork progression, ultimately leading to repeat expansions during replication fork restart.


Asunto(s)
Ataxia de Friedreich , Oligonucleótidos , Ácidos Nucleicos de Péptidos , Expansión de Repetición de Trinucleótido , Humanos , ADN , Replicación del ADN/efectos de los fármacos , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/genética , Oligonucleótidos/farmacología , Ácidos Nucleicos de Péptidos/farmacología , Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495349

RESUMEN

Nearly 50 hereditary diseases result from the inheritance of abnormally long repetitive DNA microsatellites. While it was originally believed that the size of inherited repeats is the key factor in disease development, it has become clear that somatic instability of these repeats throughout an individual's lifetime strongly contributes to disease onset and progression. Importantly, somatic instability is commonly observed in terminally differentiated, postmitotic cells, such as neurons. To unravel the mechanisms of repeat instability in nondividing cells, we created an experimental system to analyze the mutability of Friedreich's ataxia (GAA)n repeats during chronological aging of quiescent Saccharomyces cerevisiae Unexpectedly, we found that the predominant repeat-mediated mutation in nondividing cells is large-scale deletions encompassing parts, or the entirety, of the repeat and adjacent regions. These deletions are caused by breakage at the repeat mediated by mismatch repair (MMR) complexes MutSß and MutLα and DNA endonuclease Rad1, followed by end-resection by Exo1 and repair of the resulting double-strand breaks (DSBs) via nonhomologous end joining. We also observed repeat-mediated gene conversions as a result of DSB repair via ectopic homologous recombination during chronological aging. Repeat expansions accrue during chronological aging as well-particularly in the absence of MMR-induced DSBs. These expansions depend on the processivity of DNA polymerase δ while being counteracted by Exo1 and MutSß, implicating nick repair. Altogether, these findings show that the mechanisms and types of (GAA)n repeat instability differ dramatically between dividing and nondividing cells, suggesting that distinct repeat-mediated mutations in terminally differentiated somatic cells might influence Friedreich's ataxia pathogenesis.


Asunto(s)
Envejecimiento/genética , Replicación del ADN/genética , Ataxia de Friedreich/genética , Inestabilidad Genómica/genética , Expansión de Repetición de Trinucleótido/genética , ADN/biosíntesis , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , ADN Polimerasa III/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Conversión Génica , Humanos , Modelos Biológicos , Mutación/genética , Subunidades de Proteína/metabolismo , Recombinación Genética/genética , Saccharomyces cerevisiae/genética
8.
Proc Natl Acad Sci U S A ; 117(3): 1628-1637, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31911468

RESUMEN

Friedreich's ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA)n repeats in the first intron of the FXN gene [V. Campuzano et al., Science 271, 1423-1427 (1996)]. In somatic tissues of FRDA patients, (GAA)n repeat tracts are highly unstable, with contractions more common than expansions [R. Sharma et al., Hum. Mol. Genet. 11, 2175-2187 (2002)]. Here we describe an experimental system to characterize GAA repeat contractions in yeast and to conduct a genetic analysis of this process. We found that large-scale contraction is a one-step process, resulting in a median loss of ∼60 triplet repeats. Our genetic analysis revealed that contractions occur during DNA replication, rather than by various DNA repair pathways. Repeats contract in the course of lagging-strand synthesis: The processivity subunit of DNA polymerase δ, Pol32, and the catalytic domain of Rev1, a translesion polymerase, act together in the same pathway to counteract contractions. Accumulation of single-stranded DNA (ssDNA) in the lagging-strand template greatly increases the probability that (GAA)n repeats contract, which in turn promotes repeat instability in rfa1, rad27, and dna2 mutants. Finally, by comparing contraction rates for homopurine-homopyrimidine repeats differing in their mirror symmetry, we found that contractions depend on a repeat's triplex-forming ability. We propose that accumulation of ssDNA in the lagging-strand template fosters the formation of a triplex between the nascent and fold-back template strands of the repeat. Occasional jumps of DNA polymerase through this triplex hurdle, result in repeat contractions in the nascent lagging strand.


Asunto(s)
Replicación del ADN , Ataxia de Friedreich/genética , Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos , ADN Polimerasa III , Reparación del ADN , ADN de Cadena Simple , ADN Polimerasa Dirigida por ADN , Endonucleasas de ADN Solapado , Humanos , Mutación , Nucleotidiltransferasas/genética , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae
9.
Mol Cell ; 53(1): 1-3, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24411078

RESUMEN

Expansions of DNA repeats cause hereditary disorders in humans. Gerhardt et al. (2014) argue that a developmental switch in the direction of DNA replication through the (CGG)n repeat predisposes it to expansions during intergenerational transmissions leading to fragile X syndrome.


Asunto(s)
Replicación del ADN , Células Madre Embrionarias/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/embriología , Sitios Genéticos , Repeticiones de Trinucleótidos , Humanos
10.
J Biol Chem ; 295(13): 4134-4170, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32060097

RESUMEN

Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Genoma Humano/genética , Repeticiones de Microsatélite/genética , Conformación de Ácido Nucleico , Cromatina/genética , Reparación del ADN/genética , Replicación del ADN/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Inestabilidad Genómica/genética , Humanos
11.
Trends Genet ; 34(6): 448-465, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29567336

RESUMEN

Over 30 hereditary diseases are caused by the expansion of microsatellite repeats. The length of the expandable repeat is the main hereditary determinant of these disorders. They are also affected by numerous genomic variants that are either nearby (cis) or physically separated from (trans) the repetitive locus, which we review here. These genetic variants have largely been elucidated in model systems using gene knockouts, while a few have been directly observed as single-nucleotide polymorphisms (SNPs) in patients. There is a notable disconnect between these two bodies of knowledge: knockouts poorly approximate the SNP-level variation in human populations that gives rise to medically relevant cis- and trans-modifiers, while the rarity of these diseases limits the statistical power of SNP-based analysis in humans. We propose that high-throughput SNP-based screening in model systems could become a useful approach to quickly identify and characterize modifiers of clinical relevance for patients.


Asunto(s)
Expansión de las Repeticiones de ADN/genética , Regulación de la Expresión Génica/genética , Repeticiones de Microsatélite/genética , Técnicas de Inactivación de Genes , Genoma Humano/genética , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética
12.
Nucleic Acids Res ; 47(2): 794-805, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30476303

RESUMEN

Fork stabilization at DNA impediments is key to maintaining replication fork integrity and preventing chromosome breaks. Mrc1 and Tof1 are two known stabilizers that travel with the replication fork. In addition to a structural role, Mrc1 has a DNA damage checkpoint function. Using a yeast model system, we analyzed the role of Mrc1 and Tof1 at expanded CAG repeats of medium and long lengths, which are known to stall replication forks and cause trinucleotide expansion diseases such as Huntington's disease and myotonic dystrophy. We demonstrate that the fork stabilizer but not the checkpoint activation function of Mrc1 is key for preventing DNA breakage and death of cells containing expanded CAG tracts. In contrast, both Mrc1 functions are important in preventing repeat length instability. Mrc1 has a general fork protector role that is evident at forks traversing both repetitive and non-repetitive DNA, though it becomes crucial at long CAG repeat lengths. In contrast, the role of Tof1 in preventing fork breakage is specific to long CAG tracts of 85 or more repeats. Our results indicate that long CAG repeats have a particular need for Tof1 and highlight the importance of fork stabilizers in maintaining fork integrity during replication of structure-forming repeats.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Fragilidad Cromosómica , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Repeticiones de Trinucleótidos , Proteínas de Ciclo Celular/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Eliminación de Gen , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
13.
Genome Res ; 27(12): 2072-2082, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29113982

RESUMEN

Improper DNA double-strand break (DSB) repair results in complex genomic rearrangements (CGRs) in many cancers and various congenital disorders in humans. Trinucleotide repeat sequences, such as (GAA)n repeats in Friedreich's ataxia, (CTG)n repeats in myotonic dystrophy, and (CGG)n repeats in fragile X syndrome, are also subject to double-strand breaks within the repetitive tract followed by DNA repair. Mapping the outcomes of CGRs is important for understanding their causes and potential phenotypic effects. However, high-resolution mapping of CGRs has traditionally been a laborious and highly skilled process. Recent advances in long-read DNA sequencing technologies, specifically Nanopore sequencing, have made possible the rapid identification of CGRs with single base pair resolution. Here, we have used whole-genome Nanopore sequencing to characterize several CGRs that originated from naturally occurring DSBs at (GAA)n microsatellites in Saccharomyces cerevisiae These data gave us important insights into the mechanisms of DSB repair leading to CGRs.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos , Reordenamiento Génico , Nanoporos , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN/métodos , Cromosomas Fúngicos , Duplicación de Gen , Genoma Fúngico , Retroelementos , Repeticiones de Trinucleótidos
14.
Mol Cell ; 48(2): 254-65, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22959270

RESUMEN

Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats are poorly understood. We have developed an experimental system in the yeast Saccharomyces cerevisiae that allows us to systematically identify genes crucial for maintaining the repeat stability. Two major groups of mutants defective in DNA replication or transcription initiation are found to be prone to fragility and large-scale expansions. We demonstrate that problems imposed by the repeats during DNA replication in actively dividing cells and during transcription initiation in nondividing cells can culminate in genome instability. We propose that similar mechanisms can mediate detrimental metabolism of GAA/TTC tracts in human cells.


Asunto(s)
Fragilidad Cromosómica/genética , Ataxia de Friedreich/genética , Saccharomyces cerevisiae/genética , Repeticiones de Trinucleótidos/genética , Replicación del ADN , Genoma Fúngico , Genoma Humano , Inestabilidad Genómica , Humanos , Repeticiones de Microsatélite , Mutación , Conformación de Ácido Nucleico
15.
Nucleic Acids Res ; 46(7): 3487-3497, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29447396

RESUMEN

Expansion of simple DNA repeats is responsible for numerous hereditary diseases in humans. The role of DNA replication, repair and transcription in the expansion process has been well documented. Here we analyzed, in a yeast experimental system, the role of RNA-DNA hybrids in genetic instability of long (GAA)n repeats, which cause Friedreich's ataxia. Knocking out both yeast RNase H enzymes, which counteract the formation of RNA-DNA hybrids, increased (GAA)n repeat expansion and contraction rates when the repetitive sequence was transcribed. Unexpectedly, we observed a similar increase in repeat instability in RNase H-deficient cells when we either changed the direction of transcription-replication collisions, or flipped the repeat sequence such that the (UUC)n run occurred in the transcript. The increase in repeat expansions in RNase H-deficient strains was dependent on Rad52 and Pol32 proteins, suggesting that break-induced replication (BIR) is responsible for this effect. We conclude that expansions of (GAA)n repeats are induced by the formation of RNA-DNA hybrids that trigger BIR. Since this stimulation is independent of which strand of the repeat (homopurine or homopyrimidine) is in the RNA transcript, we hypothesize that triplex H-DNA structures stabilized by an RNA-DNA hybrid (H-loops), rather than conventional R-loops, could be responsible.


Asunto(s)
ADN Polimerasa Dirigida por ADN/genética , ADN/genética , ARN/genética , Proteína Recombinante y Reparadora de ADN Rad52/genética , Ribonucleasa H/genética , Proteínas de Saccharomyces cerevisiae/genética , Reparación del ADN/genética , Replicación del ADN/genética , Ataxia de Friedreich/genética , Inestabilidad Genómica/genética , Humanos , Conformación de Ácido Nucleico , Recombinación Genética , Saccharomyces cerevisiae/genética , Expansión de Repetición de Trinucleótido/genética
16.
Bioessays ; 39(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28703879

RESUMEN

In this review, we discuss how two evolutionarily conserved pathways at the interface of DNA replication and repair, template switching and break-induced replication, lead to the deleterious large-scale expansion of trinucleotide DNA repeats that cause numerous hereditary diseases. We highlight that these pathways, which originated in prokaryotes, may be subsequently hijacked to maintain long DNA microsatellites in eukaryotes. We suggest that the negative mutagenic outcomes of these pathways, exemplified by repeat expansion diseases, are likely outweighed by their positive role in maintaining functional repetitive regions of the genome such as telomeres and centromeres.


Asunto(s)
ADN/genética , Eucariontes/genética , Repeticiones de Trinucleótidos/genética , Animales , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , Repeticiones de Microsatélite/genética , Células Procariotas/fisiología , Telómero/genética
17.
Mol Cell ; 35(1): 82-92, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19595718

RESUMEN

Large-scale expansions of DNA repeats are implicated in numerous hereditary disorders in humans. We describe a yeast experimental system to analyze large-scale expansions of triplet GAA repeats responsible for the human disease Friedreich's ataxia. When GAA repeats were placed into an intron of the chimeric URA3 gene, their expansions caused gene inactivation, which was detected on the selective media. We found that the rates of expansions of GAA repeats increased exponentially with their lengths. These rates were only mildly dependent on the repeat's orientation within the replicon, whereas the repeat-mediated replication fork stalling was exquisitely orientation dependent. Expansion rates were significantly elevated upon inactivation of the replication fork stabilizers, Tof1 and Csm3, but decreased in the knockouts of postreplication DNA repair proteins, Rad6 and Rad5, and the DNA helicase Sgs1. We propose a model for large-scale repeat expansions based on template switching during replication fork progression through repetitive DNA.


Asunto(s)
Ataxia de Friedreich/genética , Expansión de Repetición de Trinucleótido/genética , Repeticiones de Trinucleótidos/genética , Levaduras/genética , Replicación del ADN/genética , Regulación Fúngica de la Expresión Génica , Humanos , Intrones/genética , Proteínas de Unión a Hierro/genética , Plásmidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Frataxina
18.
Nucleic Acids Res ; 43(14): 6994-7004, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26101261

RESUMEN

DNA sequences that can form unusual secondary structures are implicated in regulating gene expression and causing genomic instability. H-palindromes are an important class of such DNA sequences that can form an intramolecular triplex structure, H-DNA. Within an H-palindrome, the H-DNA and canonical B-DNA are in a dynamic equilibrium that shifts toward H-DNA with increased negative supercoiling. The interplay between H- and B-DNA and the fact that the process of transcription affects supercoiling makes it difficult to elucidate the effects of H-DNA upon transcription. We constructed a stable structural analog of H-DNA that cannot flip into B-DNA, and studied the effects of this structure on transcription by T7 RNA polymerase in vitro. We found multiple transcription blockage sites adjacent to and within sequences engaged in this triplex structure. Triplex-mediated transcription blockage varied significantly with changes in ambient conditions: it was exacerbated in the presence of Mn(2+) or by increased concentrations of K(+) and Li(+). Analysis of the detailed pattern of the blockage suggests that RNA polymerase is sterically hindered by H-DNA and has difficulties in unwinding triplex DNA. The implications of these findings for the biological roles of triple-stranded DNA structures are discussed.


Asunto(s)
ADN/química , Transcripción Genética , Cationes Bivalentes , Cationes Monovalentes , ARN Polimerasas Dirigidas por ADN/metabolismo , Metales/química , Conformación de Ácido Nucleico , Proteínas Virales/metabolismo
19.
Proc Natl Acad Sci U S A ; 110(49): 19866-71, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24191060

RESUMEN

Interstitial telomeric sequences (ITSs) are present in many eukaryotic genomes and are linked to genome instabilities and disease in humans. The mechanisms responsible for ITS-mediated genome instability are not understood in molecular detail. Here, we use a model Saccharomyces cerevisiae system to characterize genome instability mediated by yeast telomeric (Ytel) repeats embedded within an intron of a reporter gene inside a yeast chromosome. We observed a very high rate of small insertions and deletions within the repeats. We also found frequent gross chromosome rearrangements, including deletions, duplications, inversions, translocations, and formation of acentric minichromosomes. The inversions are a unique class of chromosome rearrangement involving an interaction between the ITS and the true telomere of the chromosome. Because we previously found that Ytel repeats cause strong replication fork stalling, we suggest that formation of double-stranded DNA breaks within the Ytel sequences might be responsible for these gross chromosome rearrangements.


Asunto(s)
Aberraciones Cromosómicas , Sitios Frágiles del Cromosoma/genética , Inestabilidad Genómica/genética , Saccharomyces cerevisiae/genética , Telómero/genética , Southern Blotting , Roturas del ADN de Doble Cadena , Genes Reporteros/genética , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa
20.
Nucleic Acids Res ; 41(3): 1817-28, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23275544

RESUMEN

The ability of DNA to adopt non-canonical structures can affect transcription and has broad implications for genome functioning. We have recently reported that guanine-rich (G-rich) homopurine-homopyrimidine sequences cause significant blockage of transcription in vitro in a strictly orientation-dependent manner: when the G-rich strand serves as the non-template strand [Belotserkovskii et al. (2010) Mechanisms and implications of transcription blockage by guanine-rich DNA sequences., Proc. Natl Acad. Sci. USA, 107, 12816-12821]. We have now systematically studied the effect of the sequence composition and single-stranded breaks on this blockage. Although substitution of guanine by any other base reduced the blockage, cytosine and thymine reduced the blockage more significantly than adenine substitutions, affirming the importance of both G-richness and the homopurine-homopyrimidine character of the sequence for this effect. A single-strand break in the non-template strand adjacent to the G-rich stretch dramatically increased the blockage. Breaks in the non-template strand result in much weaker blockage signals extending downstream from the break even in the absence of the G-rich stretch. Our combined data support the notion that transcription blockage at homopurine-homopyrimidine sequences is caused by R-loop formation.


Asunto(s)
Roturas del ADN de Cadena Simple , ADN/química , Transcripción Genética , Composición de Base , Secuencia de Bases , ARN Polimerasas Dirigidas por ADN/metabolismo , Guanina/análisis , Conformación de Ácido Nucleico , Nucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA