Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38964321

RESUMEN

DNA repair is directly performed by hundreds of core factors and indirectly regulated by thousands of others. We massively expanded a CRISPR inhibition and Cas9-editing screening system to discover factors indirectly modulating homology-directed repair (HDR) in the context of ∼18,000 individual gene knockdowns. We focused on CCAR1, a poorly understood gene that we found the depletion of reduced both HDR and interstrand crosslink repair, phenocopying the loss of the Fanconi anemia pathway. CCAR1 loss abrogated FANCA protein without substantial reduction in the level of its mRNA or that of other FA genes. We instead found that CCAR1 prevents inclusion of a poison exon in FANCA. Transcriptomic analysis revealed that the CCAR1 splicing modulatory activity is not limited to FANCA, and it instead regulates widespread changes in alternative splicing that would damage coding sequences in mouse and human cells. CCAR1 therefore has an unanticipated function as a splicing fidelity factor.

2.
PLoS Comput Biol ; 17(4): e1008329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826604

RESUMEN

Tandem alternative splice sites (TASS) is a special class of alternative splicing events that are characterized by a close tandem arrangement of splice sites. Most TASS lack functional characterization and are believed to arise from splicing noise. Based on the RNA-seq data from the Genotype Tissue Expression project, we present an extended catalogue of TASS in healthy human tissues and analyze their tissue-specific expression. The expression of TASS is usually dominated by one major splice site (maSS), while the expression of minor splice sites (miSS) is at least an order of magnitude lower. Among 46k miSS with sufficient read support, 9k (20%) are significantly expressed above the expected noise level, and among them 2.5k are expressed tissue-specifically. We found significant correlations between tissue-specific expression of RNA-binding proteins (RBP), tissue-specific expression of miSS, and miSS response to RBP inactivation by shRNA. In combination with RBP profiling by eCLIP, this allowed prediction of novel cases of tissue-specific splicing regulation including a miSS in QKI mRNA that is likely regulated by PTBP1. The analysis of human primary cell transcriptomes suggested that both tissue-specific and cell-type-specific factors contribute to the regulation of miSS expression. More than 20% of tissue-specific miSS affect structured protein regions and may adjust protein-protein interactions or modify the stability of the protein core. The significantly expressed miSS evolve under the same selection pressure as maSS, while other miSS lack signatures of evolutionary selection and conservation. Using mixture models, we estimated that not more than 15% of maSS and not more than 54% of tissue-specific miSS are noisy, while the proportion of noisy splice sites among non-significantly expressed miSS is above 63%.


Asunto(s)
Empalme Alternativo , Transcriptoma , Humanos , ARN Mensajero/genética
3.
Biomedicines ; 8(6)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486168

RESUMEN

The tumor-associated ganglioside GD2 represents an attractive target for cancer immunotherapy. GD2-positive tumors are more responsive to such targeted therapy, and new methods are needed for the screening of GD2 molecular tumor phenotypes. In this work, we built a gene expression-based binary classifier predicting the GD2-positive tumor phenotypes. To this end, we compared RNA sequencing data from human tumor biopsy material from experimental samples and public databases as well as from GD2-positive and GD2-negative cancer cell lines, for expression levels of genes encoding enzymes involved in ganglioside biosynthesis. We identified a 2-gene expression signature combining ganglioside synthase genes ST8SIA1 and B4GALNT1 that serves as a more efficient predictor of GD2-positive phenotype (Matthews Correlation Coefficient (MCC) 0.32, 0.88, and 0.98 in three independent comparisons) compared to the individual ganglioside biosynthesis genes (MCC 0.02-0.32, 0.1-0.75, and 0.04-1 for the same independent comparisons). No individual gene showed a higher MCC score than the expression signature MCC score in two or more comparisons. Our diagnostic approach can hopefully be applied for pan-cancer prediction of GD2 phenotypes using gene expression data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA