Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33524390

RESUMEN

Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.


Asunto(s)
Sialiltransferasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Glicosilación , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Ratas , Red trans-Golgi/metabolismo
2.
Anal Biochem ; 634: 114367, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509445

RESUMEN

Plant acidic peptide: N-glycanase (aPNGase) release N-glycans from glycopeptides during the degradation process of glycoproteins in developing or growing plants. We have previously developed a new method to detect the aPNGase activity in crude extracts, which is prerequisite for the construction of aPNGase knockout or overexpression lines. However, this method has the disadvantage of requiring de-sialylation treatment and a lectin chromatography. In this study, therefore, we improved the simple and accurate method for detecting aPNGase activity using anion-exchange HPLC requiring neither the desialylation treatment nor the lectin affinity chromatography.


Asunto(s)
Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Extractos Vegetales/química , Arabidopsis/química , Arabidopsis/enzimología , Cromatografía de Afinidad/métodos , Cromatografía Líquida de Alta Presión/métodos , Glicopéptidos/metabolismo , Glicoproteínas/metabolismo , Glicosilación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Plantas/metabolismo , Polisacáridos/metabolismo
3.
Biosci Biotechnol Biochem ; 85(6): 1460-1463, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33724383

RESUMEN

Cytosolic peptide:N-glycanase (cPNGase), which occurs ubiquitously in eukaryotic cells, is involved in the de-N-glycosylation of misfolded glycoproteins in the protein quality control system. In this study, we aimed to provide direct evidence of plant cPNGase activity against a denatured glycoprotein using a crude extract prepared from a mutant line of Arabidopsis thaliana lacking 2 acidic PNGase genes.


Asunto(s)
Arabidopsis/enzimología , Citosol/enzimología , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Glicosilación , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética
4.
Biochem Biophys Res Commun ; 529(2): 404-410, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32703443

RESUMEN

N-Acetylglucosaminyltransferase II (GNTII), which catalyzes the transfer of N-acetylglucosamine to N-glycans, plays an essential role in the biosynthesis of branched and complex-type N-glycans. Some characteristics of the GNTIIs from various species have been identified, but not all features have been revealed because some insects have GNTII redundancies due to the possession of splicing variants. In this study, we focused on four splicing variants of silkworm Bombyx mori GNTII (BmGNTII) that differ only in the absence or presence of Exon 2, Exon 9 or both, and we characterized the spatiotemporal transcript levels and enzymatic properties of each. Two of the splicing variants, BmGNTII-B and BmGNTII-D, lack Exon 9, and were expressed more highly in silk glands than any other organs. With respect to the enzymatic properties, optimal temperature and pH were similar among the recombinant BmGNTIIs, but the specific activities and temperature stabilities differed according to the presence or absence of Exon 9 in the splicing variants. These results demonstrate that the B. mori genome encodes splicing variants of GNTII with different enzymatic properties.


Asunto(s)
Bombyx/metabolismo , Proteínas de Insectos/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Animales , Bombyx/genética , Estabilidad de Enzimas , Exones , Genoma de los Insectos , Proteínas de Insectos/genética , Intrones , Isoenzimas/genética , Isoenzimas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Biochem Biophys Res Commun ; 530(1): 155-159, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828279

RESUMEN

Flavonoids are generally glycosylated, and the glycan moieties of flavonoid glycosides are known to greatly affect their physicochemical and biological properties. Thus, the development of a variety of tools for glycan remodeling of flavonoid glycosides is highly desired. An endo-ß-N-acetylglucosaminidase mutant Endo-CC N180H, which is developed as an excellent chemoenzymatic tool for creating sialylglycoproteins, was employed for the glycosylation of flavonoids. Endo-CC N180H transferred the sialyl biantennary glycans from the sialylglyco peptide to pNP-GlcNAc and narigenin-7-O-glucoside. The kinetic parameters of Endo-CC N180H towards SGP and pNP-GlcNAc were determined. Flavonoid glucosides harboring a 1,3-diol structure in the glucose moieties acted as substrates of Endo-CC N180H. We proposed that the sialyl biantennary glycan transfer to the flavonoid by Endo-CC N180H could pave the way for the improvement of the inherent biological functions of the flavonoids and creation of novel flavonoid glycoside derivatives for future human health benefits including foods and drugs.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Agaricales/metabolismo , Flavanonas/metabolismo , Proteínas Fúngicas/metabolismo , Glucósidos/metabolismo , Acetilglucosaminidasa/genética , Agaricales/genética , Flavanonas/genética , Proteínas Fúngicas/genética , Glucósidos/genética , Glicosilación , Mutación Puntual , Especificidad por Sustrato
6.
FEMS Yeast Res ; 20(4)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32556121

RESUMEN

Stress tolerance is a desired characteristic of yeast strains for industrial applications. Stress tolerance has been well described in Saccharomyces yeasts but has not yet been characterized in oleaginous Rhodotorula yeasts even though they are considered promising platforms for lipid production owing to their outstanding lipogenicity. In a previous study, the thermotolerant strain L1-1 was isolated from R. toruloides DMKU3-TK16 (formerly Rhodosporidium toruloides). In this study, we aimed to further examine the ability of this strain to tolerate other stresses and its lipid productivity under various stress conditions. We found that the L1-1 strain could tolerate not only thermal stress but also oxidative stress (ethanol and H2O2), osmotic stress (glucose) and a cell membrane disturbing reagent (DMSO). Our results also showed that the L1-1 strain exhibited enhanced ability to maintain ROS homeostasis, stronger cell wall strength and increased levels of unsaturated membrane lipids under various stresses. Moreover, we also demonstrated that ethanol-induced stress significantly increased the lipid productivity of the thermotolerant L1-1. The thermotolerant L1-1 was also found to produce a higher lipid titer under the dual ethanol-H2O2 stress than under non-stress conditions. This is the first report to indicate that ethanol stress can induce lipid production in an R. toruloides thermotolerant strain.


Asunto(s)
Etanol/farmacología , Peróxido de Hidrógeno/farmacología , Lípidos/biosíntesis , Mutación , Rhodotorula/efectos de los fármacos , Rhodotorula/metabolismo , Termotolerancia , Ingeniería Metabólica/métodos , Rhodotorula/genética , Estrés Fisiológico/efectos de los fármacos
7.
Biochem Biophys Res Commun ; 503(3): 1841-1847, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30057317

RESUMEN

Complex glycans at the cell surface play important roles, and their alteration is known to modulate cellular activity. Previously, we found that HBV replication in HepAD38 altered cell-surface sialylated N-glycan through the upregulation of St6gal1, Mgat2, and Mgat4a expression. Here we studied the effects of knocking them down on HBV replication in HepAD38. Our results showed that St6gal1 knockdown (KD) reduced intracellular HBV rcDNA level by 90%, that Mgat2 KD did not change the intracellular HBV rcDNA level, and that Mgat4 KD increased the intracellular HBV rcDNA level by 19 times compared to Tet(-). The changes in intracellular rcDNA level were followed by the alteration of Pol and HBc expression. Our study suggests that St6gal1 KD contributes more to the HBV life cycle than Mgat2 or Mgat4a KD through the modification of intracellular L, Pol, and HBc expression.


Asunto(s)
Virus de la Hepatitis B/crecimiento & desarrollo , Sialiltransferasas/deficiencia , Antígenos CD/genética , Antígenos CD/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Mutación , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Células Tumorales Cultivadas
8.
Int J Mol Sci ; 19(7)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986415

RESUMEN

Gaucher disease is caused by a deficiency of the enzyme glucocerebrosidase (GCase). Currently, enzyme-replacement therapy using recombinant GCase produced in mammalian cells is considered the most effective treatment. Plants are an attractive alternative host for recombinant protein production due to the low cost of large-scale production and lack of risk of contamination by human pathogens. Compared to whole plants, root cultures can grow faster. Therefore, this study aimed to produce recombinant GCase in a Nicotiana benthamiana root culture. Root culture of a GCase-producing transgenic plant was induced by indole-3-acetic acid at the concentration of 1 mg/L. Recombinant GCase was successfully produced in roots as a functional protein with an enzyme activity equal to 81.40 ± 17.99 units/mg total protein. Crude proteins were extracted from the roots. Recombinant GCase could be purified by concanavalin A and phenyl 650C chromatography. The productivity of GCase was approximately 1 µg/g of the root. A N-glycan analysis of purified GCase was performed using nano LC/MS. The Man3XylFucGlcNAc2 structure was predominant in purified GCase with two plant-specific glycan residues. This study presents evidence for a new, safe and efficient system of recombinant GCase production that might be applied to other recombinant proteins.


Asunto(s)
Glucosilceramidasa/biosíntesis , Glucosilceramidasa/aislamiento & purificación , Nicotiana/enzimología , Raíces de Plantas/enzimología , Concanavalina A/química , Medios de Cultivo/química , Enfermedad de Gaucher/enzimología , Glucosilceramidasa/química , Glucosilceramidasa/genética , Humanos , Ácidos Indolacéticos/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Factores de Tiempo , Nicotiana/genética
9.
Biochem Biophys Res Commun ; 483(1): 658-663, 2017 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-27993676

RESUMEN

l-Galactose (l-Gal) containing N-glycans and cell wall polysaccharides have been detected in the l-Fuc deficient mur1 mutant of Arabidopsis thaliana. The l-Gal residue is thought to be transferred from GDP-l-Gal, which is a structurally related analog of GDP-l-Fuc, but in vitrol-galactosylation activity has never been detected. In this study, we carried out preparative scale GDP-l-Gal synthesis using recombinant A. thaliana GDP-mannose-3',5'-epimerase. We also demonstrated the l-galactosylation assay of mouse α1,6-fucosyltransferase (MmFUT8) and A. thaliana α1,3-fucosyltransferase (AtFucTA). Both fucosyltransferases showed l-galactosylation activity from GDP-l-Gal to asparagine-linked N-acetyl-ß-d-glucosamine of asialo-agalacto-bi-antennary N-glycan instead of l-fucosylation. In addition, the apparent Km values of MmFUT8 and AtFucTA suggest that l-Fuc was preferentially transferred to N-glycan compared with l-Gal by fucosyltransferases. Our results clearly demonstrate that MmFUT8 and AtFucTA transfer l-Gal residues from GDP-l-Gal and synthesize l-Gal containing N-glycan in vitro.


Asunto(s)
Fucosiltransferasas/metabolismo , Galactosa/metabolismo , Polisacáridos/metabolismo , Animales , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Carbohidrato Epimerasas/metabolismo , Fucosa/metabolismo , Fucosiltransferasas/química , Glicosilación , Ratones , Proteínas Recombinantes/metabolismo
10.
Curr Genet ; 63(2): 359-371, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27400920

RESUMEN

Rhodosporidium toruloides DMKU3-TK16 (TK16), a basidiomycetous yeast isolated in Thailand, can produce a large amount of oil corresponding to approximately 70 % of its dry cell weight. However, lack of a sufficient and efficient transformation method makes further genetic manipulation of this organism difficult. We here developed a new transformation system for R. toruloides using a lithium acetate method with the Sh ble gene as a selective marker under the control of the R. toruloides ATCC 10657 GPD1 promoter. A linear DNA fragment containing the Sh ble gene expression cassette was integrated into the genome, and its integration was confirmed by colony PCR and Southern blot. Then, we further optimized the parameters affecting the transformation efficiency, such as the amount of linear DNA, the growth phase, the incubation time in the transformation mixture, the heat shock treatment temperature, the addition of DMSO and carrier DNA, and the recovery incubation time. With the developed method, the transformation efficiency of approximately 25 transformants/µg DNA was achieved. Compared with the initial trial, transformation efficiency was enhanced 417-fold. We further demonstrated the heterologous production of EGFP in TK16 by microscopic observation and immunoblot analysis, and use the technique to disrupt the endogenous URA3 gene. The newly developed method is thus simple and time saving, making it useful for efficient introduction of an exogenous gene into R. toruloides strains. Accordingly, this new practical approach should facilitate the molecular manipulation, such as target gene introduction and deletion, of TK16 and other R. toruloides strains as a major source of biodiesel.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Ingeniería Genética/métodos , Genoma Fúngico/genética , Aceites/metabolismo , Transformación Genética , Proteínas Bacterianas/genética , Basidiomycota/crecimiento & desarrollo , Southern Blotting , Farmacorresistencia Microbiana/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Modelos Genéticos , Mutación , Fleomicinas/farmacología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Temperatura , Transgenes/genética
11.
Glycobiology ; 26(11): 1180-1189, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27329181

RESUMEN

The functions of cell surface proteins, such as growth factor receptors and virus/bacteria-entry receptors, can be dynamically regulated by oligosaccharide modifications. In the present study, we investigated the involvement of glycosylation in hepatitis B virus (HBV) entry into hepatoma cells. Infection of oligosaccharide-remodeling hepatoma cells with a pseudo virus of HBV, bio-nanocapsule (BNC), was evaluated by flow cytometry and confocal microscopy. Among various experiments using several hepatoma cells, marked difference was observed between Huh6 cells and HB611 cells, which were established by HBV gene transfection into hepatoma cells. Comprehensive oligosaccharide analysis showed dramatic increases of core fucosylation in HB611 cells, compared with Huh6 cells. Knock down of fucosyltransferase 8 (FUT8) reduced BNC entry into HB611 cells. In contrast, overexpression of FUT8 in Huh6 cells increased BNC entry. Although expression of sodium taurocholate cotransporting polypeptide (NTCP), which is one of HBV receptors was very similar between Huh6 and HB611 cells, proteins coprecipitated with NTCP were dependent on levels of core-fucosylation, suggesting that core-fucosylation regulates BNC entry into hepatoma cells. Our findings demonstrate that core-fucosylation is an important glycosylation for HBV infection of hepatoma cells through HBV-receptor-mediated endocytosis. Down-regulation of core-fucosylation may be a novel target for HBV therapy.


Asunto(s)
Fucosa/metabolismo , Virus de la Hepatitis B/metabolismo , Hepatitis B/metabolismo , Glicosilación , Virus de la Hepatitis B/genética , Humanos , Nanocápsulas/química , Células Tumorales Cultivadas
12.
Plant Biotechnol J ; 14(8): 1682-94, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26868756

RESUMEN

For the production of therapeutic proteins in plants, the presence of ß1,2-xylose and core α1,3-fucose on plants' N-glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down-regulate the endogenous N-acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco-engineered line (NbGNTI-RNAi) showed a strong reduction of plant-specific N-glycans, with the result that as much as 90.9% of the total N-glycans were of high-mannose type. Therefore, this NbGNTI-RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI-RNAi plant was cross-pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N-glycan structures that were presented on all of the four occupied N-glycosylation sites of recombinant GC in NbGNTI-RNAi plants (GC(gnt1) ) showed that the majority (ranging from 73.3% up to 85.5%) of the N-glycans had mannose-type structures lacking potential immunogenic ß1,2-xylose and α1,3-fucose epitopes. Moreover, GC(gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI-RNAi line, producing GC, was stable and the NbGNTI-RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N-glycan structures.


Asunto(s)
Glucosilceramidasa/genética , Glucosilceramidasa/farmacocinética , Nicotiana/genética , Proteínas Recombinantes/genética , Animales , Glucosilceramidasa/metabolismo , Glicosilación , Humanos , Lectinas Tipo C/metabolismo , Macrófagos/efectos de los fármacos , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones Endogámicos C57BL , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Plantas Modificadas Genéticamente , Polinización , Polisacáridos/análisis , Polisacáridos/química , Polisacáridos/metabolismo , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Distribución Tisular , Nicotiana/metabolismo
13.
Appl Microbiol Biotechnol ; 100(2): 687-96, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26433966

RESUMEN

Flavonoids, which comprise a large family of secondary plant metabolites, have received increased attention in recent years due to their wide range of features beneficial to human health. One of the most abundant flavonoid skeletons in citrus species is the flavanone naringenin, which is accumulated as glycosides containing terminal rhamnose (Rha) after serial glycosylation steps. The linkage type of Rha residues is a determining factor in the bitterness of the citrus fruit. Such Rha residues are attached by either an α1,2- or an α1,6-rhamnosyltransferase (1,2RhaT or 1,6RhaT). Although the genes encoding these RhaTs from pummelo (Citrus maxima) and orange (Citrus sinensis) have been functionally characterized, the details of the biochemical characterization, including the substrate preference, remain elusive due to the lack of availability of the UDP-Rha required as substrate. In this study, an efficient UDP-Rha in vivo production system using the engineered fission yeast expressing Arabidopsis thaliana rhamnose synthase 2 (AtRHM2) gene was constructed. The in vitro RhaT assay using the constructed UDP-Rha revealed that recombinant RhaT proteins (Cm1,2RhaT; Cs1,6RhaT; or Cm1,6RhaT), which were heterologously produced in fission yeast, catalyzed the rhamnosyl transfer to naringenin-7-O-glucoside as an acceptor. The substrate preference analysis showed that Cm1,2RhaT had glycosyl transfer activity toward UDP-xylose as well as UDP-Rha. On the other hand, Cs1,6RhaT and Cm1,6RhaT showed rhamnosyltransfer activity toward quercetin-3-O-glucoside in addition to naringenin-7-O-glucoside, indicating weak specificity toward acceptor substrates. Finally, naringin and narirutin from naringenin-7-O-glucoside were produced using the engineered fission yeast expressing the AtRHM2 and the Cm1,2RhaT or the Cs1,6RhaT genes as a whole-cell-biocatalyst.


Asunto(s)
Citrus/enzimología , Flavanonas/biosíntesis , Flavanonas/metabolismo , Glicosiltransferasas/metabolismo , Ramnosa/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Citrus sinensis/enzimología , Clonación Molecular , Disacáridos/metabolismo , Enzimas , Flavonoides/biosíntesis , Flavonoides/metabolismo , Glucósidos/metabolismo , Glicósidos/biosíntesis , Glicosilación , Glicosiltransferasas/aislamiento & purificación , Humanos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/enzimología , Especificidad por Sustrato
14.
Biologicals ; 44(5): 394-402, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27464991

RESUMEN

In previous studies, hybridomas producing human immunoglobulin G, the antibodies 5E4 and 5A7 against influenza A and B virus were established using a novel human lymphocyte fusion partner, SPYMEG. In the present study, we succeeded in achieving the recombinant production and secretion of 5E4 and 5A7 in Chinese hamster ovary cells. Our N-glycan analysis by intact-mass detection and liquid chromatography mass spectrometry showed that recombinant 5E4 and 5A7 have one N-glycan and the typical mammalian-type N-glycan structures similar to those in hybridomas. However, the glycan distribution was slightly different among these antibodies. The amount of high-mannose-type structures was under 10% of the total N-glycans of recombinant 5E4 and 5A7, compared to 20% of the 5E4 and 5A7 produced in hybridomas. The amount of galactosylated N-glycans was increased in recombinants. Approximately 80% of the N-glycans of all antibodies was fucosylated, and no sialylated N-glycan was found. Recombinant 5E4 and 5A7 neutralized pandemic influenza A virus specifically, and influenza B virus broadly, quite similar to the 5E4 and 5A7 produced in hybridomas, respectively. Here we demonstrated that recombinants of antibodies identified from hybridomas fused with SPYMEG have normal N-glycans and that their neutralizing activities bear comparison with those of the original antibodies.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Inmunoglobulina G/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/sangre , Fusión Celular/métodos , Cricetinae , Humanos , Hibridomas/inmunología , Hibridomas/metabolismo , Inmunoglobulina G/biosíntesis , Linfocitos/inmunología , Linfocitos/metabolismo
15.
Glycobiology ; 25(12): 1441-53, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306633

RESUMEN

N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galß1-R, but exhibited the highest activity toward GalNAcß1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary.


Asunto(s)
Bombyx/enzimología , Proteínas de Insectos/metabolismo , Sialiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Bombyx/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Datos de Secuencia Molecular , Células Sf9 , Sialiltransferasas/química , Sialiltransferasas/genética , Spodoptera , beta-D-Galactósido alfa 2-6-Sialiltransferasa
16.
PLoS Pathog ; 9(2): e1003150, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23408886

RESUMEN

Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/prevención & control , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Secuencia de Bases , Mapeo Epitopo , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Hibridomas , Virus de la Influenza B/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/inmunología , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Pruebas de Neutralización , Alineación de Secuencia , Análisis de Secuencia de ADN , Resultado del Tratamiento
17.
Biochem Biophys Res Commun ; 446(2): 475-80, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24637211

RESUMEN

Dengue virus (DENV), a re-emerging virus, constitutes the largest vector-borne disease virus, with 50-100 million cases reported every year. Although DENV infection induces lifelong immunity against viruses of the same serotypes, the subsequent infection with the heterologous serotypes can cause more severe form of the disease, such as Dengue Haemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS). However, there is neither approved vaccine nor specific drugs available to treat this disease. In this study, previously developed 19 human monoclonal antibodies (HuMAbs) showing strong to moderate cross neutralizing activity were selected. Most of them (13/19) were targeted to domain II of envelop glycoprotein. To understand and clarify the recognition properties, the maturation mechanisms comprising Variable/Diversity/Joining (VDJ) recombination, Variable Heavy (VH)/Variable Light (VL) chain pairing, variability at junctional site, and somatic hypermutation (SHM) of those antibodies were studied and compared with their predecessor germline sequences. IMGT/V-QUEST database was applied to analyze the isolated VH and VL sequences. To confirm the correction of isolated VH/VL, 3 HuMAbs (1A10H7, 1B3B9, 1G7C2) was transiently expressed in HEK293T cell. All three clones of the expressed recombinant IgG (rIgG) showed the same binding and neutralizing activity as same as those from hybridomas. The data obtained in this study will elucidate the properties of those HuMAbs for further genetic modification, and its binding epitopes.


Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Virus del Dengue/genética , Virus del Dengue/inmunología , Mutación de Línea Germinal , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Anticuerpos Monoclonales/farmacología , Virus del Dengue/efectos de los fármacos , Humanos , Pruebas de Neutralización , Serotipificación
18.
Proc Natl Acad Sci U S A ; 108(38): 15846-51, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21911378

RESUMEN

Phosphatidylserine (PS) is a relatively minor constituent of biological membranes. Despite its low abundance, PS in the plasma membrane (PM) plays key roles in various phenomena such as the coagulation cascade, clearance of apoptotic cells, and recruitment of signaling molecules. PS also localizes in endocytic organelles, but how this relates to its cellular functions remains unknown. Here we report that PS is essential for retrograde membrane traffic at recycling endosomes (REs). PS was most concentrated in REs among intracellular organelles, and evectin-2 (evt-2), a protein of previously unknown function, was targeted to REs by the binding of its pleckstrin homology (PH) domain to PS. X-ray analysis supported the specificity of the binding of PS to the PH domain. Depletion of evt-2 or masking of intracellular PS suppressed membrane traffic from REs to the Golgi. These findings uncover the molecular basis that controls the RE-to-Golgi transport and identify a unique PH domain that specifically recognizes PS but not polyphosphoinositides.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilserinas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Cristalografía por Rayos X , Endosomas/ultraestructura , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Modelos Biológicos , Fosfatidilserinas/química , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Interferencia de ARN , Células Vero
19.
PLoS One ; 19(3): e0299403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489292

RESUMEN

N-linked glycosylation is a pivotal post-translational modification that significantly influences various aspects of protein biology. Autophagy, a critical cellular process, is instrumental in cell survival and maintenance. The hepatitis B virus (HBV) has evolved mechanisms to manipulate this process to ensure its survival within host cells. Significantly, post-translational N-linked glycosylation in the large surface protein of HBV (LHBs) influences virion assembly, infectivity, and immune evasion. This study investigated the role of N-linked glycosylation of LHBs in autophagy, and its subsequent effects on HBV replication and secretion. LHBs plasmids were constructed by incorporating single-, double-, and triple-mutated N-linked glycosylation sites through amino acid substitutions at N4, N112, and N309. In comparison to the wild-type LHBs, N-glycan mutants, including N309Q, N4-309Q, N112-309Q, and N4-112-309Q, induced autophagy gene expression and led to autophagosome accumulation in hepatoma cells. Acridine orange staining of cells expressing LHBs mutations revealed impaired lysosomal acidification, suggesting potential blockage of autophagic flux at later stages. Furthermore, N-glycan mutants increased the mRNA expression of HBV surface antigen (HBsAg). Notably, N309Q significantly elevated HBx oncogene level. The LHBs mutants, particularly N309Q and N112-309Q, significantly enhanced HBV replication, whereas N309Q, N4-309Q, and N4-112-309Q markedly increased HBV progeny secretion. Remarkably, our findings demonstrated that autophagy is indispensable for the impact of N-linked glycosylation mutations in LHBs on HBV secretion, as evidenced by experiments with a 3-methyladenine (3-MA) inhibitor. Our study provides pioneering insights into the interplay between N-linked glycosylation mutations in LHBs, host autophagy, and the HBV life cycle. Additionally, we offer a new clue for further investigation into carcinogenesis of hepatocellular carcinoma (HCC). These findings underscore the potential of targeting either N-linked glycosylation modifications or the autophagic pathway for the development of innovative therapies against HBV and/or HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Humanos , Virus de la Hepatitis B , Carcinoma Hepatocelular/patología , Glicosilación , Neoplasias Hepáticas/patología , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Autofagia/genética , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo
20.
J Biosci Bioeng ; 138(1): 73-82, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38643032

RESUMEN

Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.


Asunto(s)
Arabidopsis , Aspergillus , Pectinas , Plantas Modificadas Genéticamente , Semillas , Arabidopsis/genética , Arabidopsis/metabolismo , Aspergillus/enzimología , Aspergillus/genética , Aspergillus/metabolismo , Pectinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/genética , Semillas/metabolismo , Mucílago de Planta/metabolismo , Mucílago de Planta/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/enzimología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Regiones Promotoras Genéticas , Caulimovirus/genética , Caulimovirus/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA