Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Appl Environ Microbiol ; 90(2): e0194823, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38193676

RESUMEN

Deinococcus radiodurans exhibits remarkable survival under extreme conditions, including ionizing radiation, desiccation, and various DNA-damaging agents. It employs unique repair mechanisms, such as single-strand annealing (SSA) and extended synthesis-dependent strand annealing (ESDSA), to efficiently restore damaged genome. In this study, we investigate the role of the natural transformation-specific protein DprA in DNA repair pathways following acute gamma radiation exposure. Our findings demonstrate that the absence of DprA leads to rapid repair of gamma radiation-induced DNA double-strand breaks primarily occur through SSA repair pathway. Additionally, our findings suggest that the DprA protein may hinder both the SSA and ESDSA repair pathways, albeit in distinct manners. Overall, our results highlight the crucial function of DprA in the selection between SSA and ESDSA pathways for DNA repair in heavily irradiated D. radiodurans.IMPORTANCEDeinococcus radiodurans exhibits an extraordinary ability to endure and thrive in extreme environments, including exposure to radiation, desiccation, and damaging chemicals, as well as intense UV radiation. The bacterium has evolved highly efficient repair mechanisms capable of rapidly mending hundreds of DNA fragments in its genome. Our research indicates that natural transformation (NT)-specific dprA genes play a pivotal role in regulating DNA repair in response to radiation. Remarkably, we found that DprA is instrumental in selecting DNA double-strand break repair pathways, a novel function that has not been reported before. This unique regulatory mechanism highlights the indispensable role of DprA beyond its native function in NT and underscores its ubiquitous presence across various bacterial species, regardless of their NT proficiency. These findings shed new light on the resilience and adaptability of Deinococcus radiodurans, opening avenues for further exploration into its exceptional survival strategies.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , Roturas del ADN de Doble Cadena , ADN/metabolismo , Daño del ADN , Deinococcus/genética , Deinococcus/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
2.
J Bacteriol ; 205(2): e0046522, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36695594

RESUMEN

Natural transformation enables bacteria to acquire DNA from the environment and contributes to genetic diversity, DNA repair, and nutritional requirements. DNA processing protein A (DprA) receives incoming single-stranded DNA and assists RecA loading for homology-directed natural chromosomal transformation and DNA strand annealing during plasmid transformation. The dprA gene occurs in the genomes of all known bacteria, irrespective of their natural transformation status. The DprA protein has been characterized by its molecular, cellular, biochemical, and biophysical properties in several bacteria. This review summarizes different aspects of DprA biology, collectively describing its biochemical properties, molecular interaction with DNA, and function interaction with bacterial RecA during natural transformation. Furthermore, the roles of DprA in natural transformation, bacterial virulence, and pilin variation are discussed.


Asunto(s)
Proteínas Fimbrias , Transformación Bacteriana , Proteínas Fimbrias/genética , Proteínas Bacterianas/genética , Virulencia , ADN , ADN de Cadena Simple , Rec A Recombinasas/metabolismo
3.
J Biol Chem ; 296: 100451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33626388

RESUMEN

Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.


Asunto(s)
Deinococcus/genética , Deinococcus/metabolismo , Proteínas Bacterianas/metabolismo , División Celular/genética , Segregación Cromosómica , Girasa de ADN/metabolismo , Reparación del ADN/genética , Replicación del ADN/genética , Genoma Bacteriano/genética , Plásmidos/genética , Ploidias , Dominios y Motivos de Interacción de Proteínas , Tolerancia a Radiación
4.
J Bacteriol ; 203(15): e0016321, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031039

RESUMEN

In rod-shaped Gram-negative bacteria, FtsZ localization at midcell position is regulated by the gradient of MinCDE complex across the poles. In round-shaped bacteria, which lack predefined poles, the next plane of cell division is perpendicular to the previous plane, and determination of the FtsZ assembly site is still intriguing. Deinococcus radiodurans, a coccus bacterium, is characterized by its extraordinary resistance to DNA damage. DivIVA, a putative component of the Min system in this bacterium, interacts with cognate cell division and genome segregation proteins. Here, we report that deletion of a chromosomal copy of DivIVA was possible only when the wild-type copy of DivIVA was expressed in trans on a plasmid. However, deletion of the C-terminal domain (CTD) of DivIVA (CTD mutant) was possible but produced distinguishable phenotypes, like smaller cells, slower growth, and tilted septum orientation, in D. radiodurans. In trans expression of DivIVA in the CTD mutant could restore these features of the wild type. Interestingly, the overexpression of DivIVA led to delayed separation of tetrads from an octet state in both trans-complemented divIVA-mutant and wild-type cells. The CTD mutant showed upregulation of the yggS-divIVAN operon. Both the wild type and CTD mutant formed FtsZ foci; however, unlike wild type, the position of foci in the mutant cells was found to be away from conjectural midcell position in cocci. Notably, DivIVA-red fluorescent protein (DivIVA-RFP) localizes to the septum during cell division at the new division site. These results suggested that DivIVA is an essential protein in D. radiodurans, and its C-terminal domain plays an important role in the regulation of its expression and orientation of new septal growth in this bacterium. IMPORTANCE In rod-shaped Gram-negative bacteria, the midcell position for binary fission is relatively easy to model. In cocci that do not have predefined poles, the plane of next cell division is shown to be perpendicular to the previous plane. However, the molecular basis of perpendicularity is not known in cocci. The DivIVA protein of Deinococcus radiodurans, a coccus bacterium, physically interacts with the septum and establishes macromolecular interactions with genome segregation proteins through its N-terminal domain and with MinC through the C-terminal domain. Here, we have brought forth some evidence to suggest that DivIVA is essential for growth and plays an important role in cell polarity determination, and its C-terminal domain plays a crucial role in the growth of new septa in the correct orientation as well as in the regulation of DivIVA expression.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/citología , Deinococcus/metabolismo , Proteínas Bacterianas/genética , División Celular , Polaridad Celular , Deinococcus/genética , Regulación Bacteriana de la Expresión Génica , Operón , Fenotipo
5.
Mol Microbiol ; 112(3): 854-865, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31162841

RESUMEN

The GC-rich genome of Deinococcus radiodurans contains a very high density of putative guanine quadruplex (G4) DNA motifs and its RecQ (drRecQ) was earlier characterized as a 3'→5' dsDNA helicase. We saw that N-Methyl mesoporphyrin IX (NMM), a G4 DNA binding drug affected normal growth as well as the gamma radiation resistance of the wild-type bacterium. Interestingly, NMM treatment and recQ deletion showed additive effect on normal growth but there was no effect of NMM on gamma radiation resistance of recQ mutant. The recombinant drRecQ showed ~400 times higher affinity to G4 DNA (Kd  = 11.74 ± 1.77 nM) as compared to dsDNA (Kd  = 4.88 ± 1.30 µM). drRecQ showed ATP independent helicase function on G4 DNA, which was higher than ATP-dependent helicase activity on dsDNA. Unlike wild-type cells that sparingly stained for G4 structure with Thioflavin T (ThT), recQ mutant showed very high-density of ThT fluorescence foci on DNA indicating an important role of drRecQ in regulation of G4 DNA structure dynamics in vivo. These results together suggested that drRecQ is an ATP independent G4 DNA helicase that plays an important role in the regulation of G4 DNA structure dynamics and its impact on radioresistance in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , Deinococcus/enzimología , Deinococcus/efectos de la radiación , Regulación Bacteriana de la Expresión Génica , RecQ Helicasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/crecimiento & desarrollo , G-Cuádruplex , Viabilidad Microbiana/efectos de la radiación , RecQ Helicasas/química , RecQ Helicasas/genética , Especificidad por Sustrato
6.
Biochem J ; 476(5): 909-930, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30804051

RESUMEN

Deinococcus radiodurans, an extremely radioresistant bacterium has a multipartite genome system and ploidy. Mechanisms underlying such types of bacterial genome maintenance and its role in extraordinary radioresistance are not known in this bacterium. Chromosome I (Chr I), chromosome II (Chr II) and megaplasmid (Mp) encode its own set of genome partitioning proteins. Here, we have characterized P-loop ATPases of Chr II (ParA2) and Mp (ParA3) and their roles in the maintenance of genome copies and extraordinary radioresistance. Purified ParA2 and ParA3 showed nearly similar polymerization kinetics and interaction patterns with DNA. Electron microscopic examination of purified proteins incubated with DNA showed polymerization on nicked circular dsDNA. ParA2 and ParA3 showed both homotypic and heterotypic interactions to each other, but not with ParA1 (ParA of Chr I). Similarly, ParA2 and ParA3 interacted with ParB2 and ParB3 but not with ParB1 in vivo ParB2 and ParB3 interaction with cis-elements located upstream to the corresponding parAB operon was found to be sequence-specific. Unlike single mutant of parA2 and parA3, their double mutant (ΔparA2ΔParA3) affected copy number of cognate genome elements and resistance to γ-radiation as well as hydrogen peroxide in this bacterium. These results suggested that ParA2 and ParA3 are DNA-binding ATPases producing higher order polymers on DNA and are functionally redundant in the maintenance of secondary genome elements in D. radiodurans The findings also suggest the involvement of secondary genome elements such as Chr II and Mp in the extraordinary radioresistance of D. radiodurans.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos , ADN Bacteriano , Deinococcus , Plásmidos , Tolerancia a Radiación/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Deinococcus/genética , Deinococcus/metabolismo , Plásmidos/genética , Plásmidos/metabolismo
7.
J Bacteriol ; 201(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31235513

RESUMEN

Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radioduransIMPORTANCEDeinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.


Asunto(s)
ADN/genética , Deinococcus/efectos de la radiación , G-Cuádruplex , Rayos gamma , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Genoma Bacteriano/efectos de la radiación , Deinococcus/genética
8.
Plasmid ; 100: 6-13, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30261215

RESUMEN

The gene knockouts are mostly created using homologous recombination-based replacement of target gene(s) with the expressing cassette of selection marker gene(s). Here, we constructed a series of plasmids bearing the expressing cassettes of genes encoding different antibiotics markers like nptII (KanR), aadA (SpecR), cat (CmR) and aac(3) (GenR). D. radiodurans is a radioresistant Gram positive bacterium that does not support the independent maintenance of colE1 origin-based plasmids. Using these constructs, the disruption mutants of both single and multiple genes involved in segregation of secondary genome elements have been generated in this bacterium. Unlike single mutants, the double and triple mutants showed growth retardation under normal growth conditions and the synergistic effects with Topoisomerase II inhibitor on the growth of this bacterium. Thus, these plasmids could be useful in creating multiple deletions/disruptions in bacteria that do not support independent maintenance of colE1 origin-based plasmid.


Asunto(s)
Secuencia de Bases , Deinococcus/genética , Ingeniería Genética/métodos , Genoma Bacteriano , Plásmidos/química , Eliminación de Secuencia , Farmacorresistencia Bacteriana/genética , Genotipo , Recombinación Homóloga , Fenotipo , Plásmidos/metabolismo , Tolerancia a Radiación/genética
9.
J Biol Chem ; 291(32): 16672-85, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27255712

RESUMEN

Deinococcus radiodurans has a remarkable capacity to survive exposure to extreme levels of radiation that cause hundreds of DNA double strand breaks (DSBs). DSB repair in this bacterium depends on its recombinase A protein (DrRecA). DrRecA plays a pivotal role in both extended synthesis-dependent strand annealing and slow crossover events of DSB repair during the organism's recovery from DNA damage. The mechanisms that control DrRecA activity during the D. radiodurans response to γ radiation exposure are unknown. Here, we show that DrRecA undergoes phosphorylation at Tyr-77 and Thr-318 by a DNA damage-responsive serine threonine/tyrosine protein kinase (RqkA). Phosphorylation modifies the activity of DrRecA in several ways, including increasing its affinity for dsDNA and its preference for dATP over ATP. Strand exchange reactions catalyzed by phosphorylated versus unphosphorylated DrRecA also differ. In silico analysis of DrRecA structure support the idea that phosphorylation can modulate crucial functions of this protein. Collectively, our findings suggest that phosphorylation of DrRecA enables the recombinase to selectively use abundant dsDNA substrate present during post-irradiation recovery for efficient DSB repair, thereby promoting the extraordinary radioresistance of D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , Reparación del ADN , Deinococcus/enzimología , Tolerancia a Radiación , Rec A Recombinasas/metabolismo , Proteínas Bacterianas/genética , Roturas del ADN de Doble Cadena , Deinococcus/genética , Fosforilación , Rec A Recombinasas/genética
10.
Microbiology (Reading) ; 162(8): 1321-1334, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27368754

RESUMEN

The Deinococcus radiodurans genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. In vivo interactions of D. radiodurans' sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in Escherichia coli using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in E. coli. Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of 'DrFts' proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/genética , División Celular/genética , Segregación Cromosómica/genética , Deinococcus/crecimiento & desarrollo , Deinococcus/genética , Escherichia coli/crecimiento & desarrollo , División Celular/fisiología , Segregación Cromosómica/fisiología , Escherichia coli/genética , Inmunoprecipitación , Plásmidos/genética , Técnicas del Sistema de Dos Híbridos
11.
Extremophiles ; 20(2): 195-205, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26847200

RESUMEN

The multipartite genome of Deinococcus radiodurans forms toroidal structure. It encodes topoisomerase IB and both the subunits of DNA gyrase (DrGyr) while lacks other bacterial topoisomerases. Recently, PprA a pleiotropic protein involved in radiation resistance in D. radiodurans has been suggested for having roles in cell division and genome maintenance. In vivo interaction of PprA with topoisomerases has also been shown. DrGyr constituted from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild type PprA stimulated DNA relaxation activity while inhibited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in PprA and that showed very little effect on DrGyr activities in vitro. Interestingly, wild type PprA and its K133E derivative continued interacting with GyrA in vivo while W183R, which formed relatively short oligomers did not interact with GyrA. The size of nucleoid in PprA mutant (1.9564 ± 0.324 µm) was significantly bigger than the wild type (1.6437 ± 0.345 µm). Thus, we showed that DrGyr confers all three activities of bacterial type IIA family DNA topoisomerases, which are differentially regulated by PprA, highlighting the significant role of PprA in DrGyr activity regulation and genome maintenance in D. radiodurans.


Asunto(s)
Proteínas Bacterianas/metabolismo , Girasa de ADN/metabolismo , Deinococcus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Girasa de ADN/química , Girasa de ADN/genética , ADN Ligasas/metabolismo , Deinococcus/genética , Mutación , Unión Proteica , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
12.
Appl Microbiol Biotechnol ; 99(22): 9761-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26201493

RESUMEN

Deinococcus radiodurans displays compromised radioresistance in the presence of guanine quadruplex (G4)-binding drugs (G4 drugs). Genome-wide scanning showed islands of guanine runs (G-motif) in the upstream regions of coding sequences as well as in the structural regions of many genes, indicating a role for G4 DNA in the regulation of genome functions in this bacterium. G-motifs present upstream to some of the DNA damage-responsive genes like lexA, pprI, recF, recQ, mutL and radA were synthesized, and the formation of G4 DNA structures was probed in vitro. The G-motifs present at the 67th position upstream to recQ and at the 121st position upstream to mutL produced parallel and mixed G4 DNA structures, respectively. Expression of ß-galactosidase under recQ and mutL promoters containing respective G-motifs was inhibited by G4 drugs under normal growth conditions in D. radiodurans. However, when such cells were exposed to γ radiation, mutL promoter activity was stimulated while recQ promoter activity was inhibited in the presence of G4 drugs. Deletion of the G-motif from the recQ promoter could relax it from G4 drug repression. D. radiodurans cells treated with G4 drug showed reduction in recQ expression and γ radiation resistance, indicating an involvement of G4 DNA in the radioresistance of this bacterium. These results suggest that G-motifs from D. radiodurans genome form different types of G4 DNA structures at least in vitro, and the recQ and mutL promoters seem to be differentially regulated at the levels of G4 DNA structures.


Asunto(s)
ADN Bacteriano/genética , Deinococcus/genética , G-Cuádruplex , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Regiones Promotoras Genéticas , Deinococcus/efectos de la radiación , Rayos gamma , Conformación de Ácido Nucleico
13.
Nucleic Acids Res ; 41(1): 76-89, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23161683

RESUMEN

A remarkable number of guanine-rich sequences with potential to adopt non-canonical secondary structures called G-quadruplexes (or G4 DNA) are found within gene promoters. Despite growing interest, regulatory role of quadruplex DNA motifs in intrinsic cellular function remains poorly understood. Herein, we asked whether occurrence of potential G4 (PG4) DNA in promoters is associated with specific function(s) in bacteria. Using a normalized promoter-PG4-content (PG4(P)) index we analysed >60,000 promoters in 19 well-annotated species for (a) function class(es) and (b) gene(s) with enriched PG4(P). Unexpectedly, PG4-associated functional classes were organism specific, suggesting that PG4 motifs may impart specific function to organisms. As a case study, we analysed radioresistance. Interestingly, unsupervised clustering using PG4(P) of 21 genes, crucial for radioresistance, grouped three radioresistant microorganisms including Deinococcus radiodurans. Based on these predictions we tested and found that in presence of nanomolar amounts of the intracellular quadruplex-binding ligand N-methyl mesoporphyrin (NMM), radioresistance of D. radiodurans was attenuated by ~60%. In addition, important components of the RecF recombinational repair pathway recA, recF, recO, recR and recQ genes were found to harbour promoter-PG4 motifs and were also down-regulated in presence of NMM. Together these results provide first evidence that radioresistance may involve G4 DNA-mediated regulation and support the rationale that promoter-PG4s influence selective functions.


Asunto(s)
Deinococcus/genética , G-Cuádruplex , Regiones Promotoras Genéticas , Tolerancia a Radiación/genética , Metabolismo de los Hidratos de Carbono/genética , ADN Bacteriano/química , Deinococcus/efectos de la radiación , Genes Bacterianos , Genoma Bacteriano , Guanina/química , Ligandos , Motivos de Nucleótidos , Especificidad de la Especie
14.
J Bacteriol ; 195(17): 3888-96, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23794625

RESUMEN

The Deinococcus radiodurans genome encodes five putative quinoproteins. Among these, the Δdr2518 and Δdr1769 mutants became sensitive to gamma radiation. DR2518 with beta propeller repeats in the C-terminal domain was characterized as a radiation-responsive serine/threonine protein kinase in this bacterium. DR1769 contains beta propeller repeats at the N terminus, while its C-terminal domain is a proline-rich disordered structure and constitutes a low-complexity hydrophilic region with aliphatic-proline dipeptide motifs. The Δdr1769 mutant showed nearly a 3-log cycle sensitivity to desiccation at 5% humidity compared to that of the wild type. Interestingly, the gamma radiation and mitomycin C (MMC) resistance in mutant cells also dropped by ∼1-log cycle at 10 kGy and ∼1.5-fold, respectively, compared to those in wild-type cells. But there was no effect of UV (254 nm) exposure up to 800 J · m(-2). These cells showed defective DNA double-strand break repair, and the average size of the nucleoid in desiccated wild-type and Δdr1769 cells was reduced by approximately 2-fold compared to that of respective controls. However, the nucleoid in wild-type cells returned to a size almost similar to that of the untreated control, which did not happen in mutant cells, at least up to 24 h postdesiccation. These results suggest that DR1769 plays an important role in desiccation and radiation resistance of D. radiodurans, possibly by protecting genome integrity under extreme conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/fisiología , Desecación , Estrés Fisiológico , Proteínas Bacterianas/genética , Deinococcus/efectos de los fármacos , Deinococcus/genética , Deinococcus/efectos de la radiación , Rayos gamma , Eliminación de Gen , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Mitomicina/toxicidad , Rayos Ultravioleta
15.
Biochim Biophys Acta ; 1820(7): 1052-61, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22503789

RESUMEN

BACKGROUND: Deinococcus radiodurans survives extreme doses of radiations contributed by efficient DNA repair pathways. DR2417 (DncA) was detected separately both in a pool of nucleotide binding proteins and multiprotein complex isolated from cells undergoing DNA repair. SCOPE OF REVIEW: DR_2417m ORF was sequenced and amino acid sequence of DncA was search for structural similarities with other proteins and functional motifs. Recombinant DncA was characterized for its DNA metabolic functions in vitro and its role in radiation resistance. MAJOR CONCLUSIONS: Sequencing of DR_2417m did not show the reported frame shift at 996th nucleotide position of this gene. DncA showed similarities with ß-CASP family nucleases. Recombinant protein acted efficiently on dsDNA and showed an Mn2+ dependent 3'→5' exonuclease and ssDNA/dsDNA junction endonuclease activities while a very low level activity on RNA. The DNase activity of this protein was inhibited in presence of ATP. Its transcription was induced upon γ radiation exposure and a reduction in its copy number resulted in reduced growth rate and loss of γ radiation resistance in Deinococcus. CONCLUSION: Our results suggest that DncA was a novel nuclease of ß CASP family having a strong dsDNA end processing activity and it seems to be an essential gene required for both growth and γ radiation resistance of this bacterium. GENERAL SIGNIFICANCE: Traditionally DncA should have shown both DNase and RNase functions as other members of ß CASP family nucleases. A strong DNase and poor RNase activity possibly made it functionally significant in the radioresistance of D. radiodurans, which would be worth investigating independently.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Deinococcus/enzimología , Deinococcus/efectos de la radiación , Exonucleasas/metabolismo , Tolerancia a Radiación , Daño del ADN , Reparación del ADN/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Rayos gamma , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
J Mol Evol ; 77(1-2): 31-42, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23934623

RESUMEN

Deinococcus radiodurans has an unusual capacity to recover from intense doses of ionizing radiation. The DNA repair proteins of this organism play an important role in repairing the heavily damaged DNA by employing a novel mechanism of DNA double-strand break repair. An earlier report stated that genes of many of these repair proteins are under positive selection implying that these genes have a tendency to mutate, which in turn provides selective advantage to this bacterium. Several "hypothetical proteins" are also present during the recovery phase and some of them have also been shown for their roles in radiation resistance. Therefore, we tested the selection pressure on the genes encoding these poorly characterized proteins. Our results show that a number of "hypothetical proteins" present during the repair phase have structural adaptations compared to their orthologs and the genes encoding them as well as those for the DNA repair proteins present during this phase are under purifying selection. Evidence of purifying selection in these hypothetical proteins suggests that certain novel characteristics among these proteins are conserved and seem to be under functional constraints to perform important functions during recovery process after gamma radiation damage.


Asunto(s)
Proteínas Bacterianas/genética , Deinococcus/genética , Tolerancia a Radiación/genética , Selección Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biología Computacional/métodos , Daño del ADN/efectos de la radiación , Reparación del ADN , Deinococcus/clasificación , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Rayos gamma/efectos adversos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Conformación Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Transcriptoma
18.
Microbiol Spectr ; : e0314122, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744915

RESUMEN

DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.

19.
FASEB Bioadv ; 5(1): 27-42, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36643897

RESUMEN

The polymerization/depolymerization dynamics of FtsZ play a pivotal role in cell division in the majority of the bacteria. Deinococcus radiodurans, a radiation-resistant bacterium, shows an arrest of growth in response to DNA damage with no change in the level of FtsZ. This bacterium does not deploy LexA/RecA type of DNA damage response and cell cycle regulation, and its genome does not encode SulA homologues of Escherichia coli, which attenuate FtsZ functions in response to DNA damage in other bacteria. A radiation-responsive Ser/Thr quinoprotein kinase (RqkA), characterized for its role in radiation resistance in this bacterium, could phosphorylate several cognate proteins, including FtsZ (drFtsZ) at Serine 235 (S235) and Serine 335 (S335) residues. Here, we reported the detailed characterization of S235 and S335 phosphorylation effects in the regulation of drFtsZ functions and demonstrated that the phospho-mimetic replacements of these residues in drFtsZ had grossly affected its functions that could result in cell cycle arrest in response to DNA damage in D. radiodurans. Interestingly, the phospho-ablative replacements were found to be nearly similar to drFtsZ, whereas the phospho-mimetic mutant lost the wild-type protein's signature characteristics, including its dynamics under normal conditions. The kinetics of post-bleaching recovery for drFtsZ and phospho-mimetic mutant were nearly similar at 2 h post-irradiation recovery but were found to be different under normal conditions. These results highlighted the role of S/T phosphorylation in the regulation of drFtsZ functions and cell cycle arrest in response to DNA damage, which is demonstrated for the first time, in any bacteria.

20.
J Bacteriol ; 194(21): 5739-48, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22843847

RESUMEN

Deinococcus radiodurans, a radiation-resistant bacterium, harbors a multipartite genome. Chromosome I contains three putative centromeres (segS1, segS2, and segS3), and ParA (ParA1) and ParB (ParB1) homologues. The ParB1 interaction with segS was sequence specific, and ParA1 was shown to be a DNA binding ATPase. The ATPase activity of ParA1 was stimulated when segS elements were coincubated with ParB1, but the greatest increase was observed with segS3. ParA1 incubated with the segS-ParB1 complex showed increased light scattering in the absence of ATP. In the presence of ATP, this increase was continued with segS1-ParA1B1 and segS2-ParA1B1 complexes, while it decreased rapidly after an initial increase for 30 min in the case of segS3. D. radiodurans cells expressing green fluorescent protein (GFP)-ParB1 produced foci on nucleoids, and the ΔparB1 mutant showed growth retardation and ∼13%-higher anucleation than the wild type. Unstable mini-F plasmids carrying segS1 and segS2 showed inheritance in Escherichia coli without ParA1B1, while segS3-mediated plasmid stability required the in trans expression of ParA1B1. Unlike untransformed E. coli cells, cells harboring pDAGS3, a plasmid carrying segS3 and also expressing ParB1-GFP, produced discrete GFP foci on nucleoids. These findings suggested that both segS elements and the ParA1B1 proteins of D. radiodurans are functionally active and have a role in genome segregation.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Centrómero/metabolismo , Cromosomas Bacterianos/metabolismo , Deinococcus/genética , Deinococcus/fisiología , Escherichia coli/genética , Plásmidos/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA