RESUMEN
Aquaporin-0 (AQP0) is the main water channel in the mammalian lens and is involved in accommodation and maintaining lens transparency. AQP0 binds the Ca2+-sensing protein calmodulin (CaM) and this interaction is believed to gate its water permeability by closing the water-conducting pore. Here, we express recombinant and functional human AQP0 in Pichia pastoris and investigate how phosphorylation affects the interaction with CaM in vitro as well as the CaM-dependent water permeability of AQP0 in proteoliposomes. Using microscale thermophoresis and surface plasmon resonance technology we show that the introduction of the single phospho-mimicking mutations S229D and S235D in AQP0 reduces CaM binding. In contrast, CaM interacts with S231D with similar affinity as wild type, but in a different manner. Permeability studies of wild-type AQP0 showed that the water conductance was significantly reduced by CaM in a Ca2+-dependent manner, whereas AQP0 S229D, S231D and S235D were all locked in an open state, insensitive to CaM. We propose a model in which phosphorylation of AQP0 control CaM-mediated gating in two different ways (1) phosphorylation of S229 or S235 abolishes binding (the pore remains open) and (2) phosphorylation of S231 results in CaM binding without causing pore closure, the functional role of which remains to be elucidated. Our results suggest that site-dependent phosphorylation of AQP0 dynamically controls its CaM-mediated gating. Since the level of phosphorylation increases towards the lens inner cortex, AQP0 may become insensitive to CaM-dependent gating along this axis.
Asunto(s)
Acuaporinas , Calmodulina , Animales , Humanos , Acuaporinas/genética , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Cristalino/metabolismo , Mamíferos/metabolismo , Fosforilación , Agua/metabolismoRESUMEN
ClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters. The chloride conducting pathway exhibits distinct features, including a central glutamate residue ("fast gate") known to confer voltage-dependence (a mechanistic feature not present in ClC-K), linked to a somewhat rearranged central tyrosine and a narrower aperture of the pore toward the extracellular vestibule. These characteristics agree with the lower chloride flux of ClC-1 compared with ClC-K and enable us to propose a model for chloride passage in voltage-dependent CLC channels. Comparison of structures derived from protein studied in different experimental conditions supports the notion that pH and adenine nucleotides regulate ClC-1 through interactions between the so-called cystathionine-ß-synthase (CBS) domains and the intracellular vestibule ("slow gating"). The structure also provides a framework for analysis of mutations causing myotonia congenita and reveals a striking correlation between mutated residues and the phenotypic effect on voltage gating, opening avenues for rational design of therapies against ClC-1-related diseases.
Asunto(s)
Canales de Cloruro/ultraestructura , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Microscopía por Crioelectrón/métodos , Humanos , Activación del Canal Iónico , Cinética , Potenciales de la Membrana , Modelos MolecularesRESUMEN
Aquaporins (AQPs) are membrane-bound water channels that play crucial roles in maintaining the water homeostasis of the human body. Here, we present a protocol for high-yield recombinant expression of human AQPs in the methylotropic yeast Pichia pastoris and subsequent AQP purification. The protocol typically yields 1-5 mg AQP per g of yeast cell at >95% purity and is compatible with any membrane protein cloned into Pichia pastoris, although expression levels may vary. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Frick et al. (2014).
Asunto(s)
Acuaporinas , Saccharomycetales , Acuaporinas/genética , Humanos , Pichia/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismoRESUMEN
Aquaporin water channels (AQPs) are membrane proteins that maintain cellular water homeostasis. The interactions between human AQPs and other proteins play crucial roles in AQP regulation by both gating and trafficking. Here, we describe a protocol for characterizing the interaction between a human AQP and a soluble interaction partner using microscale thermophoresis (MST). MST has the advantage of low sample consumption and high detergent compatibility enabling AQP protein-protein interaction investigation with a high level of control of components and environment. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Roche et al. (2017).
Asunto(s)
Acuaporinas , Acuaporinas/metabolismo , Homeostasis , Humanos , Proteínas/metabolismoRESUMEN
Human aquaporin 10 (hAQP10) is an aquaglyceroporin that assists in maintaining glycerol flux in adipocytes during lipolysis at low pH. Hence, a molecular understanding of the pH-sensitive glycerol conductance may open up for drug development in obesity and metabolically related disorders. Control of hAQP10-mediated glycerol flux has been linked to the cytoplasmic end of the channel, where a unique loop is regulated by the protonation status of histidine 80 (H80). Here, we performed unbiased molecular dynamics simulations of three protonation states of H80 to unravel channel gating. Strikingly, at neutral pH, we identified a water coordination pattern with an inverted orientation of the water molecules in vicinity of the loop. Protonation of H80 results in a more hydrophobic loop conformation, causing loss of water coordination and leaving the pore often dehydrated. Our results indicate that the loss of such water interaction network may be integral for the destabilization of the loop in the closed configuration at low pH. Additionally, a residue unique to hAQP10 (F85) reveals structural importance by flipping into the channel in correlation with loop movements, indicating a loop-stabilizing role in the closed configuration. Taken together, our simulations suggest a unique gating mechanism combining complex interaction networks between water molecules and protein residues at the loop interface. Considering the role of hAQP10 in adipocytes, the detailed molecular insights of pH-regulation presented here will help to understand glycerol pathways in these cells and may assist in drug discovery for better management of human adiposity and obesity.
Asunto(s)
Adiposidad/genética , Acuaporinas/genética , Glicerol/metabolismo , Agua/metabolismo , Acuaporinas/química , Citoplasma/química , Citoplasma/genética , Histidina/genética , Humanos , Concentración de Iones de Hidrógeno , Lipólisis/genética , Simulación de Dinámica Molecular , Obesidad/genética , Obesidad/metabolismo , ProtonesRESUMEN
Aquaporins (AQPs) are water channels embedded in the cell membrane that are critical in maintaining water homeostasis. We describe a protocol for determining the water permeation capacity of AQPs reconstituted into proteoliposomes. Using a stopped-flow setup, AQP embedded in proteoliposomes are exposed to an osmogenic gradient that triggers water flux. The consequent effects on proteoliposome size can be tracked using the fluorescence of an internalized fluorophore. This enables controlled characterization of water flux by AQPs. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020).
Asunto(s)
Acuaporinas , Agua , Acuaporinas/metabolismo , Permeabilidad , Proteolípidos/metabolismo , Agua/metabolismoRESUMEN
Copper (Cu) is one of the most abundant trace metals in all organisms, involved in a plethora of cellular processes. Yet elevated concentrations of the element are harmful, and interestingly prokaryotes are more sensitive for environmental Cu stress than humans. Various transport systems are present to maintain intracellular Cu homeostasis, including the prokaryotic plasmid-encoded multiprotein pco operon, which is generally assigned as a defense mechanism against elevated Cu concentrations. Here we structurally and functionally characterize the outer membrane component of the Pco system, PcoB, recovering a 2.0 Å structure, revealing a classical ß-barrel architecture. Unexpectedly, we identify a large opening on the extracellular side, linked to a considerably electronegative funnel that becomes narrower towards the periplasm, defining an ion-conducting pathway as also supported by metal binding quantification via inductively coupled plasma mass spectrometry and molecular dynamics (MD) simulations. However, the structure is partially obstructed towards the periplasmic side, and yet flux is permitted in the presence of a Cu gradient as shown by functional characterization in vitro. Complementary in vivo experiments demonstrate that isolated PcoB confers increased sensitivity towards Cu. Aggregated, our findings indicate that PcoB serves to permit Cu import. Thus, it is possible the Pco system physiologically accumulates Cu in the periplasm as a part of an unorthodox defense mechanism against metal stress. These results point to a previously unrecognized principle of maintaining Cu homeostasis and may as such also assist in the understanding and in efforts towards combatting bacterial infections of Pco-harboring pathogens.
Asunto(s)
Cobre , Proteínas de la Membrana , Transporte Biológico , Cobre/metabolismo , Homeostasis , Humanos , Proteínas de la Membrana/metabolismo , Periplasma/metabolismoRESUMEN
Membrane proteins (MPs) constitute a large fraction of the proteome, but exhibit physicochemical characteristics that impose challenges for successful sample production crucial for subsequent biophysical studies. In particular, MPs have to be extracted from the membranes in a stable form. Reconstitution into detergent micelles represents the most common procedure in recovering MPs for subsequent analysis. n-dodecyl-ß-D-maltoside (DDM) remains one of the most popular conventional detergents used in production of MPs. Here we characterize the novel DDM analogue 4-trans-(4-trans-propylcyclohexyl)-cyclohexyl α-maltoside (t-PCCαM), possessing a substantially lower critical micelle concentration (CMC) than the parental compound that represents an attractive feature when handling MPs. Using three different types of MPs of human and prokaryotic origin, i.e., a channel, a primary and a secondary active transporter, expressed in yeast and bacterial host systems, respectively, we investigate the performance of t-PCCαM in solubilization and affinity purification together with its capacity to preserve native fold and activity. Strikingly, t-PCCαM displays favorable behavior in extracting and stabilizing the three selected targets. Importantly, t-PCCαM promoted extraction of properly folded protein, enhanced thermostability and provided negatively-stained electron microscopy samples of promising quality. All-in-all, t-PCCαM emerges as competitive surfactant applicable to a broad portfolio of challenging MPs for downstream structure-function analysis.
RESUMEN
Overproduction and purification of membrane proteins are generally challenging and time-consuming procedures due to low expression levels, misfolding, and low stability once extracted from the membrane. Reducing processing steps and shortening the timespan for purification represent attractive approaches to overcome some of these challenges. We have therefore compared a fast "teabag" purification method with conventional purification for five different membrane proteins (MraY, AQP10, ClC-1, PAR2 and KCC2). Notably, this new approach reduces the purification time significantly, and the quality of the purified membrane proteins is equal to or exceeds conventional methods as assessed by size exclusion chromatography, SDS-PAGE and downstream applications such as ITC, crystallization and cryo-EM. Furthermore, the method is scalable, applicable to a range of affinity resins and allows for parallelization. Consequently, the technique has the potential to substantially simplify purification efforts of membrane proteins in basic and applied sciences.
Asunto(s)
Proteínas de la Membrana/metabolismo , Electroforesis en Gel de PoliacrilamidaRESUMEN
Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
Asunto(s)
Tejido Adiposo/metabolismo , Acuaporinas/metabolismo , Glicerol/metabolismo , Adipocitos/metabolismo , Anciano , Acuaporinas/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Análisis de Componente PrincipalRESUMEN
The sparse number of high-resolution human membrane protein structures severely restricts our comprehension of molecular physiology and ability to exploit rational drug design. In the search for a standardized, cheap and easily handled human membrane protein production platform, we thoroughly investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human membrane proteins suitable for biophysical characterization.