Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0005524, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38511945

RESUMEN

The coronavirus disease 2019 pandemic illustrates the importance of understanding the behavior and control of human pathogenic viruses in the environment. Exposure via water (drinking, bathing, and recreation) is a known route of transmission of viruses to humans, but the literature is relatively void of studies on the persistence of many viruses, especially coronaviruses, in water and their susceptibility to chlorine disinfection. To fill that knowledge gap, we evaluated the persistence and free chlorine disinfection of human coronavirus OC43 (HCoV-OC43) and its surrogates, murine hepatitis virus (MHV) and porcine transmissible gastroenteritis virus (TGEV), in drinking water and laboratory buffer using cell culture methods. The decay rate constants of human coronavirus and its surrogates in water varied, depending on virus and water matrix. In drinking water without disinfectant addition, MHV showed the largest decay rate constant (estimate ± standard error, 2.25 ± 0.09 day-1) followed by HCoV-OC43 (0.99 ± 0.12 day-1) and TGEV (0.65 ± 0.06 day-1), while in phosphate buffer without disinfectant addition, HCoV-OC43 (0.51 ± 0.10 day-1) had a larger decay rate constant than MHV (0.28 ± 0.03 day-1) and TGEV (0.24 ± 0.02 day-1). Upon free chlorine disinfection, the inactivation rates of coronaviruses were independent of free chlorine concentration and were not affected by water matrix, though they still varied between viruses. TGEV showed the highest susceptibility to free chlorine disinfection with the inactivation rate constant of 113.50 ± 7.50 mg-1 min-1 L, followed by MHV (81.33 ± 4.90 mg-1 min-1 L) and HCoV-OC43 (59.42 ± 4.41 mg-1 min-1 L). IMPORTANCE: This study addresses an important knowledge gap on enveloped virus persistence and disinfection in water. Results have immediate practical applications for shaping evidence-based water policies, particularly in the development of disinfection strategies for pathogenic virus control.


Asunto(s)
Desinfectantes , Agua Potable , Virus de la Hepatitis Murina , Virus , Animales , Ratones , Porcinos , Humanos , Desinfección/métodos , Cloro/farmacología , Desinfectantes/farmacología
2.
Environ Sci Technol ; 58(20): 8654-8664, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38709862

RESUMEN

Potable reuse water is increasingly part of the water supply portfolio for municipalities facing water shortages, and toxicity assays can be useful for evaluating potable reuse water quality. We examined the Chinese hamster ovary cell acute direct genotoxicity of potable reuse waters contributed by disinfection byproducts (DBPs) and anthropogenic contaminants and used the local conventional drinking waters as benchmarks for evaluating potable reuse water quality. Our results showed that treatment trains based on reverse osmosis (RO) were more effective than RO-free treatment trains for reducing the genotoxicity of influent wastewaters. RO-treated reuse waters were less genotoxic than the local tap water derived from surface water, whereas reuse waters not treated by RO were similarly genotoxic as the local drinking waters when frequent replacement of granular activated carbon limited contaminant breakthrough. The genotoxicity contributed by nonvolatile, uncharacterized DBPs and anthropogenic contaminants accounted for ≥73% of the total genotoxicity. The (semi)volatile DBPs of current research interest contributed 2-27% toward the total genotoxicity, with unregulated DBPs being more important genotoxicity drivers than regulated DBPs. Our results underscore the need to look beyond known, (semi)volatile DBPs and the importance of determining whole water toxicity when assessing the quality of disinfected waters.


Asunto(s)
Cricetulus , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Células CHO , Contaminantes Químicos del Agua/toxicidad , Desinfección , Cricetinae , Pruebas de Mutagenicidad , Calidad del Agua , Abastecimiento de Agua
3.
Environ Sci Technol ; 57(14): 5852-5860, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36976858

RESUMEN

Chlorine reactions with peptide-bound amino acids form disinfection byproducts and contribute to pathogen inactivation by degrading protein structure and function. Peptide-bound lysine and arginine are two of the seven chlorine-reactive amino acids, but their reactions with chlorine are poorly characterized. Using N-acetylated lysine and arginine as models for peptide-bound amino acids and authentic small peptides, this study demonstrated conversion of the lysine side chain to mono- and dichloramines and the arginine side chain to mono-, di-, and trichloramines in ≤0.5 h. The lysine chloramines formed lysine nitrile and lysine aldehyde at ∼6% yield over ∼1 week. The arginine chloramines formed ornithine nitrile at ∼3% yield over ∼1 week but not the corresponding aldehyde. While researchers hypothesized that the protein aggregation observed during chlorination arises from covalent Schiff base cross-links between lysine aldehyde and lysine on different proteins, no evidence for Schiff base formation was observed. The rapid formation of chloramines and their slow decay indicate that they are more relevant than the aldehydes and nitriles to byproduct formation and pathogen inactivation over timescales relevant to drinking water distribution. Previous research has indicated that lysine chloramines are cytotoxic and genotoxic to human cells. The conversion of lysine and arginine cationic side chains to neutral chloramines should alter protein structure and function and enhance protein aggregation by hydrophobic interactions, contributing to pathogen inactivation.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Cloraminas/química , Lisina , Halogenación , Arginina , Cloro/química , Agregado de Proteínas , Bases de Schiff , Desinfección , Aminoácidos/química , Péptidos , Aldehídos , Nitrilos , Contaminantes Químicos del Agua/química
4.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36626832

RESUMEN

The use of sodium bisulfite as an electron donor to quench chloramine disinfectant residuals in municipal wastewater effluents prior to discharge incurs the cost of purchasing and transporting bisulfite to the utility and increases the loading of salts to the receiving water. In this study, degradation of chloramine residuals within authentic municipal wastewater effluents was achieved within a 30 min timescale using a reductive electrochemical reactor, which supplied electrons via a stainless-steel cathode under galvanostatic conditions without an ion exchange membrane separating the cathode and anode. Application of a 0.26 mA/cm2 cathodic current density reduced chloramines to ammonia and avoided oxidation at the IrO2-coated titanium anode of chloride to chlorine or chlorate and of ammonia to nitrite or nitrate. Net chloramine production was observed at a higher current density (2 mA/cm2). Chloramine degradation rates and Coulombic efficiencies were highest and electrical energy per order (EEO) values were lowest for the 304-grade stainless-steel cathode, which contains the highest nickel content, and for a stainless-steel cathode with a high surface area. Differences in ionic strength and pH were less important. For chloraminated municipal wastewater samples, the highest Coulombic efficiency was 4.1% and the lowest EEO value was 0.08 kWh/m3. An initial comparison indicated that the electricity cost associated with this EEO value would be comparable to the cost of sodium bisulfite for areas with low electricity costs.

5.
Environ Sci Technol ; 57(32): 12063-12071, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531609

RESUMEN

The washwater used to wash produce within postharvest washing facilities frequently contains high chlorine concentrations to prevent pathogen cross-contamination. To address concerns regarding the formation and uptake of chlorate (ClO3-) into produce, this study evaluated whether switching to chlorine dioxide (ClO2) could reduce chlorate concentrations within the produce. Because ClO2 exhibits lower disinfectant demand than chlorine, substantially lower concentrations can be applied. However, ClO3- can form through several pathways, particularly by reactions between ClO2 and the chlorine used to generate ClO2 via reaction with chlorite (ClO2-) or chlorine that forms when ClO2 reacts with produce. This study demonstrates that purging ClO2 from the chlorine and ClO2- mixture used for its generation through a trap containing ClO2- can scavenge chlorine, substantially reducing ClO3- concentrations in ClO2 stock solutions. Addition of low concentrations of ammonia to the produce washwater further reduced ClO3- formation by binding the chlorine produced by ClO2 reactions with produce as inactive chloramines without scavenging ClO2. While chlorate concentrations in lettuce, kale, and broccoli exceeded regulatory guidelines during treatment with chlorine, ClO3- concentrations were below regulatory guidelines for each of these vegetables when treated with ClO2 together with these two purification measures. Switching to purified ClO2 also reduced the concentrations of lipid-bound oleic acid chlorohydrins and protein-bound chlorotyrosines, which are exemplars of halogenated byproducts formed from disinfectant reactions with biomolecules within produce.


Asunto(s)
Compuestos de Cloro , Desinfectantes , Purificación del Agua , Desinfección , Cloratos , Cloro , Compuestos de Cloro/química , Óxidos/química , Desinfectantes/química
6.
Environ Sci Technol ; 57(36): 13699-13709, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37640368

RESUMEN

Granular activated carbon treatment with postchlorination (GAC/Cl2) and chlorination followed by chloramination (Cl2/NH2Cl) represent two options for utilities to reduce DBP formation in drinking water. To compare the total cytotoxicity of waters treated by a pilot-scale GAC treatment system with postchlorination (and in some instances with prechlorination upstream of GAC (i.e., (Cl2)/GAC/Cl2)) and chlorination/chloramination (Cl2/NH2Cl) at ambient and elevated Br- and I- levels and at three different GAC ages, we applied the Chinese hamster ovary (CHO) cell cytotoxicity assay to whole-water extracts in conjunction with calculations of the cytotoxicity contributed by the 33 (semi)volatile DBPs lost during extractions. At both ambient and elevated Br- and I- levels, GAC/Cl2 and Cl2/NH2Cl achieved comparable reductions in the formation of regulated trihalomethanes (THMs) and haloacetic acids (HAAs). Nonetheless, GAC/Cl2 always resulted in lower total cytotoxicity than Cl2/NH2Cl, even at up to 65% total organic carbon breakthrough. Prechlorination formed (semi)volatile DBPs that were removed by the GAC, yet there was no substantial difference in total cytotoxicity between Cl2/GAC/Cl2 and GAC/Cl2. The poorly characterized fraction of DBPs captured by the bioassay dominated the total cytotoxicity when the source water contained ambient levels of Br- and I-. When the water was spiked with Br- and I-, the known, unregulated (semi)volatile DBPs and the uncharacterized fraction of DBPs were comparable contributors to total cytotoxicity; the contributions of regulated THMs and HAAs were comparatively minor.


Asunto(s)
Agua Potable , Animales , Cricetinae , Halogenación , Carbón Orgánico , Células CHO , Cricetulus , Trihalometanos
7.
Environ Sci Technol ; 56(24): 17965-17976, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36459429

RESUMEN

Granular activated carbon (GAC) is used to sorb a broad range of halogenated contaminant classes, but spent GAC disposal is costly. Taking advantage of GAC's conductivity, this study evaluated the conversion of the GAC to cathodes for electrochemical reductive dehalogenation of 15 halogenated alkanes and alkenes exhibiting a diversity of structures (type of halogen, number of halogens, functional groups) and including contaminants of practical importance (e.g., trichloroethylene). Alkane degradation rates increased with the number of halogens and in the order: chlorine < bromine < iodine. Quantitative structure-activity relationships (QSARs) correlating experimental first-order degradation rate constants for alkanes with molecular descriptors associated with an outer-sphere one-electron transfer calculated using density functional theory indicated that correlations with molecular descriptors improved in the order: aqueous phase reduction potentials (E0,aq) < energy of the substrate's lowest unoccupied molecular orbital (ELUMO) < Marcus theory activation free energies (ΔG‡) ∼ gas-phase standard reduction free energies (ΔG0,gas). Chlorinated alkene degradation rates increased with decreasing number of chlorines, and QSAR correlations were opposite those of alkanes, indicating a different reaction mechanism. Degradation timescales ranged from 1 min to 3 h with halides as predominant products. These results suggest that the electrochemical reduction of halogenated alkanes and alkenes can be used to regenerate spent GAC.


Asunto(s)
Alcanos , Carbón Orgánico , Alquenos , Halógenos/química , Cloro , Electrodos
8.
Environ Sci Technol ; 56(2): 1233-1243, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34941240

RESUMEN

High chlorine doses (50-200 mg/L) are used in postharvest washing facilities to control foodborne pathogen outbreaks. However, chlorine can react with biopolymers (e.g., lipids) within the produce to form chlorinated byproducts that remain in the food. During chlorination of micelles of oleic acid, an 18-carbon alkene fatty acid, chlorine added rapidly across the double bond to form the two 9,10-chlorohydrin isomers at a 100% yield. The molar conversion of lipid-bound oleic acid to 9,10-chlorohydrins in chlorine-treated glyceryl trioleate and produce was much lower, reflecting the restricted access of chlorine to lipids. Yields from spinach treated with 100 mg/L chlorine at 7.5 °C for 2 min increased from 0.05% (0.9 nmol/g-spinach) for whole leaf spinach to 0.11% (2 nmol/g) when shredding increased chlorine access. Increasing temperature (21 °C) and chlorine contact time (15 min) increased yields from shredded spinach to 0.83% (22 nmol/g) at 100 mg/L chlorine and to 1.8% (53 nmol/g) for 200 mg/L chlorine. Oleic acid 9,10-chlorohydrin concentrations were 2.4-2.7 nmol/g for chlorine-treated (100 mg/L chlorine at 7.5 °C for 2 min) broccoli, carrots, and butterhead lettuce, but 0.5-1 nmol/g for cabbage, kale, and red leaf lettuce. Protein-bound chlorotyrosine formation was higher in the same vegetables (5-32 nmol/g). The Chinese hamster ovary cell chronic cytotoxicity LC50 value for oleic acid 9,10-chlorohydrins was 0.106 mM. The cytotoxicity associated with the chlorohydrins and chlorotyrosines in low masses (9-52 g) of chlorine-washed vegetables would be comparable to that associated with trihalomethanes and haloacetic acids at levels of regulatory concern in drinking water.


Asunto(s)
Clorhidrinas , Desinfectantes , Animales , Células CHO , Cloro , Cricetinae , Cricetulus , Desinfección , Ácido Oléico , Verduras
9.
Environ Sci Technol ; 56(12): 8712-8721, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35656915

RESUMEN

Treatment of domestic wastewater can recover valuable resources, including clean water, energy, and ammonia. Important metrics for these systems are greenhouse gas (GHG) emissions and embodied energy, both of which are location- and technology-dependent. Here, we determine the embodied energy and GHG emissions resulting from a conventional process train, and we compare them to a nonconventional process train. The conventional train assumes freshwater conveyance from a pristine source that requires energy for pumping (US average of 0.29 kWh/m3), aerobic secondary treatment with N removal as N2, and Haber-Bosch synthesis of ammonia. Overall, we find that this process train has an embodied energy of 1.02 kWh/m3 and a GHG emission of 0.77 kg-CO2eq/m3. We compare these metrics to those of a nonconventional process train that features anaerobic secondary treatment technology followed by further purification of the effluent by reverse osmosis and air stripping for ammonia recovery. This "short-cut" process train reduces embodied energy to 0.88 kWh/m3 and GHG emissions to 0.42 kg-CO2eq/m3, while offsetting demand for ammonia from the Haber-Bosch process and decreasing reliance upon water transported over long distances. Finally, to assess the potential impacts of nonconventional nitrogen removal technology, we compared the embodied energy and GHG emissions resulting from partial nitritation/anammox coupled to anaerobic secondary treatment. The resulting process train enabled a lower embodied energy but increased GHG emissions, largely due to emissions of N2O, a potent greenhouse gas.


Asunto(s)
Gases de Efecto Invernadero , Aguas Residuales , Amoníaco , Efecto Invernadero , Eliminación de Residuos Líquidos , Agua
10.
Environ Sci Technol ; 55(21): 14876-14885, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34652150

RESUMEN

The increasing use of chlorine- or chloramine-containing irrigation waters to minimize foodborne pathogens is raising concerns about the formation and uptake of disinfection byproducts into irrigated produce. Chlorate has received particular attention in the European Union. While previous research demonstrated the formation of chlorate from dark disproportionation reactions of free chlorine and uptake of chlorate into produce from roots, this study evaluated chlorate formation from solar irradiation of chlorine- and chloramine-containing irrigation droplets and uptake through produce surfaces. Sunlight photolysis of 50 µM (3.6 mg/L as Cl2) chlorine significantly enhanced the formation of chlorate, with a 7.2% molar yield relative to chlorine. Chlorate formation was much less significant in sunlit chloramine solutions. In chlorinated solutions containing 270 µg/L bromide, sunlight also induced the conversion of bromide to 280 µg/L bromate. Droplet evaporation and the resulting increase in chlorine concentrations approximately doubled sunlight-induced chlorate formation relative to that in the bulk solutions in which evaporation is negligible. When vegetables (broccoli, cabbage, chicory, lettuce, and spinach) were sprayed with chlorine-containing irrigation water in a sunlit field, sunlight promoted chlorate formation and uptake through vegetable surfaces to concentrations above maximum residue levels in the European Union. Spraying with chloramine-containing waters in the dark minimized chlorate formation and uptake into the vegetables.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Cloratos , Cloro , Desinfección , Luz Solar , Agua
11.
Environ Sci Technol ; 55(20): 14136-14145, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34618438

RESUMEN

Over 700 disinfection byproducts (DBPs) have been identified, but they account for only ∼30% of total organic halogen (TOX). Extracting disinfected water is necessary to assess the overall toxicity of both known and unknown DBPs. Commonly used DBP extraction methods include liquid-liquid extraction (LLE) and solid-phase extraction (SPE), which may use either XAD resins or other polymeric sorbents. With few exceptions, DBP recoveries have not been quantified. We compared recoveries by LLE, XAD resins, and a mixture of Phenomenex Sepra SPE sorbents (hereafter SPE) for (semi-)volatile DBPs and nonvolatile model compounds at the 1-L scale. We scaled up the three methods to extract DBPs in 10 L of chlorinated creek waters. For (semi-)volatile DBPs, XAD resulted in lower recoveries than LLE and SPE at both 1- and 10-L scales. At the 10-L scale, recovery of certain trihalomethanes and trihalogenated haloacetic acids by XAD was negligible, while recovery of other (semi-)volatile DBPs extracted by XAD (<30%) was lower than by SPE or LLE (30-60%). TOX recovery at the 10-L scale was generally similar by the three extraction methods. The low TOX recovery (<30%) indicates that the toxicity assessed by bioassays predominantly reflects the contribution of the nonvolatile, hydrophobic fraction of DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Desinfección , Halogenación , Trihalometanos/análisis , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Technol ; 55(3): 1790-1799, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33492937

RESUMEN

The covalent modifications resulting from chlorine reactions with peptide-bound amino acids contribute to pathogen inactivation and disinfection byproduct (DBP) formation. Previous research suggested that histidine is the third most reactive of the seven chlorine-reactive amino acids, leading to the formation of 2-chlorohistidine, 2-oxohistidine, or low-molecular-weight byproducts such as trihalomethanes. This study demonstrates that histidine is less reactive toward formation of chlorine transformation products (transformation time scale of hours to days) than five of the seven chlorine-reactive amino acids, including tyrosine (transformation time scale of minutes). Chlorine targeted tyrosine in preference to histidine within peptides, indicating that chlorine reactions with tyrosine and other more reactive amino acids could contribute more to the structural modifications to proteins over the short time scales relevant to pathogen inactivation. Over the longer time scales relevant to disinfection byproduct formation in treatment plants or distribution systems, this study identified ß-cyanoalanine as the dominant transformation product of chlorine reactions with peptide-bound histidine, with molar yields of ∼50% after 1 day. While a chlorinated histidine intermediate was observed at lower yields (maximum ∼5%), the cumulative concentration of the conventional low-molecular-weight DBPs (e.g., trihalomethanes) was ≤7%. These findings support the need to identify the high-yield initial transformation products of chlorine reactions with important precursor structures to facilitate the identification of unknown DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfección , Halogenación , Histidina , Péptidos , Trihalometanos , Contaminantes Químicos del Agua/análisis
13.
Acc Chem Res ; 52(3): 615-622, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30821146

RESUMEN

In response to water scarcity and an increased recognition of the risks associated with the presence of chemical contaminants, environmental engineers have developed advanced water treatment systems that are capable of converting municipal wastewater effluent into drinking water. This practice, which is referred to as potable water reuse, typically relies upon reverse osmosis (RO) treatment followed by exposure to ultraviolet (UV) light and addition of hydrogen peroxide (H2O2). These two treatment processes individually are capable of controlling many of the chemical and microbial contaminants in wastewater; however, a few chemicals may still be present after treatment at concentrations that affect water quality. Low-molecular weight (<200 Da), uncharged compounds represent the greatest challenge for RO treatment. For potable water reuse systems, compounds of greatest concern include oxidation products formed during treatment (e.g., N-nitrosodimethylamine, halogenated disinfection byproducts) and compounds present in wastewater effluent (e.g., odorous compounds, organic solvents). Although the concentrations of most of these compounds decrease to levels where they no longer compromise water quality after they encounter the second treatment barrier (i.e., UV/H2O2), low-molecular weight compounds that are resistant to direct photolysis and exhibit low reactivity with hydroxyl radical (·OH) may persist. While attempts to identify the compounds that pass through both barriers have accounted for approximately half of the dissolved organic carbon remaining after treatment, it is unlikely that a significant fraction of the remaining unknowns will ever be identified with current analytical techniques. Nonetheless, the toxicity-weighted concentration of certain known compounds (e.g., disinfection byproducts) is typically lower in RO-UV/H2O2 treated water than conventional drinking water. To avoid the expense associated with managing the concentrate produced by RO, environmental engineers have begun to employ alternative treatment barriers. The use of alternatives such as nanofiltration, ozonation followed by biological filtration, or activated carbon filtration avoids the problems associated with the production and disposal of RO concentrate, but they may allow a larger number of chemical contaminants to pass through the treatment process. In addition to the transformation products and solvents that pose risks in the RO-UV/H2O2 system, these alternative barriers are challenged by larger, polar compounds that are not amenable to oxidation, such as perfluoroalkyl acids and phosphate-containing flame retardants. To fully protect consumers who rely upon potable water reuse systems, new policies are needed to prevent chemicals that are difficult to remove during advanced treatment from entering the sewer system. By using knowledge about the composition of municipal wastewater and the mechanisms through which contaminants are removed during treatment, it should be possible to safely reuse municipal wastewater effluent as a drinking water source.

14.
Environ Sci Technol ; 54(19): 12593-12601, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32822532

RESUMEN

The UV/hydrogen peroxide (H2O2) advanced oxidation process (AOP) frequently employed to generate hydroxyl radical (•OH) to treat reverse osmosis permeate (ROP) in potable reuse treatment trains is inefficient, using only 10% of the H2O2. This study evaluated ·OH generation by electron transfer from a low-cost stainless steel cathode. In deionized water, the electrochemical system achieved 0.5 log removal of 1,4-dioxane, a benchmark for AOP validation for potable reuse, within 4 min using only 1.25 mg/L H2O2. Hydrogen peroxide and 1,4-dioxane degradations were maximized near -0.18 and + 0.02 V versus standard hydrogen electrode, respectively. Degradations of positively and negatively charged compounds were comparable to neutral 1,4-dioxane, indicating that degradation occurs by ·OH generation from neutral H2O2 and that electrostatic repulsion of contaminants from the electrode is not problematic. For ROP without chloramines, 0.5 log 1,4-dioxane removal was achieved in 6.7 min with 7 mM salts for ionic strength and 2.5 mg/L H2O2. For ROP with 1.4 mg/L as Cl2 chloramines, 0.5 log 1,4-dioxane removal was achieved in 13.2 min with 7 mM salts and 4.5 mg/L total H2O2 dosed in three separate injections in 5 min intervals. Initial estimates based on lab-scale electrochemical AOP treatment indicated that, except for the cost of salts, the electrochemical AOP featured lower reagent costs than the UV/H2O2 AOP but higher electricity costs that could be reduced by optimization of the electrochemical design.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Ósmosis , Oxidación-Reducción , Rayos Ultravioleta
15.
Environ Sci Technol ; 54(24): 16176-16185, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33269915

RESUMEN

Reverse osmosis (RO) treatment of municipal wastewater effluent is becoming more common as water reuse is implemented in water-stressed regions. Where RO concentrate is discharged with limited dilution, concentrations of trace organic contaminants could pose risks to aquatic ecosystems. To provide a low-cost option for removing trace organic compounds from RO concentrate, a pilot-scale treatment system comprising open-water unit-process wetlands with and without ozone pretreatment was studied over a 2-year period. A suite of ecotoxicologically relevant organic contaminants was partially removed via photo- and bio-transformations, including ß-adrenergic blockers, antivirals, antibiotics, and pesticides. Biotransformation rates were as fast as or up to approximately 50% faster than model predictions based upon data from open-water wetlands that treated municipal wastewater effluent. Phototransformation rates were comparable to or as much as 60% slower than those predicted by models that accounted for light penetration and scavenging of reactive oxygen species. Several compounds were transformed during ozone pretreatment that were poorly removed in the open-water wetland. The combined treatment system resulted in a decrease in the risk quotients of trace organic contaminants in the RO concentrate, but still dilution may be required to protect sensitive species from urban-use pesticides with low environmental effect concentrations.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Ecosistema , Ósmosis , Eliminación de Residuos Líquidos , Aguas Residuales , Agua , Humedales
16.
Environ Sci Technol ; 54(23): 15465-15475, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33185421

RESUMEN

Chloramines applied to control microfiltration and reverse osmosis (RO) membrane biofouling in potable reuse trains form the potent carcinogen, N-nitrosodimethylamine (NDMA). In addition to degrading other contaminants, UV-based advanced oxidation processes (AOPs) strive to degrade NDMA by direct photolysis. The UV/chlorine AOP is gaining attention because of its potential to degrade other contaminants at lower UV fluence than the UV/hydrogen peroxide AOP, although previous pilot studies have observed that the UV/chlorine AOP was less effective for NDMA control. Using dimethylamine (DMA) as a model precursor and secondary municipal wastewater effluent, this study evaluated NDMA formation during the AOP treatment via two pathways. First, NDMA formation by UV treatment of monochloramine (NH2Cl) and chlorinated DMA (Cl-DMA) passing through RO membranes was maximized at 350 mJ/cm2 UV fluence, declining at higher fluence, where NDMA photolysis outweighed NDMA formation. Second, this study demonstrated that chlorine addition to the chloramine-containing RO permeate during the UV/chlorine AOP treatment initiated rapid NDMA formation by dark breakpoint reactions associated with reactive intermediates from the hydrolysis of dichloramine. At pH 5.7, this formation was maximized at a chlorine/ammonia molar ratio of 3 (out of 0-10), conditions typical for UV/chlorine AOPs. At 700 mJ/cm2 UV fluence, which is applicable to current practice, NDMA photolysis degraded a portion of the NDMA formed by breakpoint reactions. Lowering UV fluence to ∼350 mJ/cm2 when switching to the UV/chlorine AOP exacerbates effluent NDMA concentrations because of concurrent NDMA formation via the UV/NH2Cl/Cl-DMA and breakpoint chlorination pathways. Fluence >700 mJ/cm2 or chlorine doses greater than the 3:1 chlorine/ammonia molar ratios under consideration for the UV/HOCl AOP treatment are needed to achieve NDMA control.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Dimetilnitrosamina , Peróxido de Hidrógeno , Ósmosis , Rayos Ultravioleta
17.
Environ Sci Technol ; 54(9): 5729-5736, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32275830

RESUMEN

Recent studies used the sum of the measured concentrations of individual disinfection byproducts (DBPs) weighted by their Chinese hamster ovary (CHO) cell cytotoxicity LC50 values to estimate the DBP-associated cytotoxicity of disinfected waters. This approach assumed that cytotoxicity was additive rather than synergistic or antagonistic. In this study, we evaluated whether this assumption was valid for mixtures containing DBPs at the concentration ratios measured in authentic disinfected waters. We examined the CHO cell cytotoxicity of defined DBP mixtures based on the concentrations of 43 regulated and unregulated DBPs measured in eight drinking and potable reuse waters. The hypothesis for additivity was supported using three experimental approaches. First, we demonstrated that the calculated additive toxicity (CAT) and bioassay-based calculated additive toxicity (BCAT) of the DBP mixtures agree within 12% on a median basis. We also found an additive toxicity response (CAT ≈ BCAT) between the regulated and unregulated DBP classes. Finally, the empirical biological cytotoxicity of the DBP subset mixtures, independent of the calculated toxicity, was additive. These results support the validity of using the sum of cytotoxic potency-weighted DBP concentrations as an estimate of the CHO cell cytotoxicity associated with known DBPs in real disinfected waters.


Asunto(s)
Desinfectantes/análisis , Agua Potable , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Animales , Células CHO , Cricetinae , Cricetulus , Desinfección , Halogenación
18.
Environ Sci Technol ; 53(8): 4416-4425, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30889356

RESUMEN

Chloramines applied to control membrane biofouling in potable reuse trains pass through reverse osmosis membranes, such that downstream ultraviolet (UV)/H2O2 advanced oxidation processes (AOPs) are de facto UV/H2O2-chloramine AOPs. Current models for UV/chloramine AOPs, which use inaccurate chloramine quantum yields and ignore the fate of •NH2, are unable to simultaneously predict the loss of chloramines and contaminants, such as 1,4-dioxane. This study determined quantum yields for NH2Cl (0.35) and NHCl2 (0.75). Incorporating these quantum yields and the formation from •NH2 of the radical scavengers, •NO and NO2-, was important for simultaneously modeling the loss of chloramines, H2O2, and 1,4-dioxane in the UV/H2O2-chloramine AOP. Although the level of radical production was higher for the UV/H2O2-chloramine AOP than for the UV/H2O2 AOP, the UV/H2O2 AOP was at least 2-fold more efficient with respect to 1,4-dioxane degradation, because chloramines efficiently scavenged radicals. At low chloramine concentrations, the UV/chloramine AOP efficiency increased with an increase in chloramine concentration, as the level of radical production increased relative to that of radical scavenging by the dissolved organic carbon in RO permeate. However, the efficiency leveled out at higher chloramine concentrations as radical scavenging by chloramines offset the increased level of radical production. The level of 1,4-dioxane degradation was ∼30-50% lower for the UV/chloramine AOP than for the UV/H2O2-chloramine AOP when the concentration of residual chloramines in RO permeate was ∼50 µM (3.3 mg/L as Cl2). Initial cost estimates indicate that the UV/chloramine AOP using the residual chloramines in RO permeate could be a cost-effective alternative to the current UV/H2O2-chloramine AOP in some cases, because the savings in reagent costs offset the ∼30-50% reduction in 1,4-dioxane degradation efficiency.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Filtración , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta
19.
Environ Sci Technol ; 53(7): 3729-3738, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811182

RESUMEN

Advanced treatment trains based on oxidation, biofiltration, and/or granular activated carbon (Ox/BAF/GAC) are an attractive alternative to those based on microfiltration, reverse osmosis, and advanced oxidation (MF/RO/AOP) for the potable reuse of municipal wastewater effluents, but their effluent quality is difficult to validate with respect to chemical contaminants. This study evaluated the sum of the concentrations of 46 disinfection byproducts (DBPs) after treatment by chlorine or chloramines weighted by metrics of toxic potency in 10 full- or pilot-scale reuse trains to estimate the DBP-associated toxicity of their effluents. These total toxicity-weighted DBP concentrations were compared to those measured in their local, conventional drinking waters as a benchmark for water quality receiving regulatory and widespread public acceptance. The results indicated that while the DBP-associated quality of MF/RO/AOP-based reuse waters can readily exceed that of drinking waters, that of Ox/BAF/GAC-based reuse waters can approach or exceed that of drinking waters, particularly when they are chloraminated. Unregulated, halogenated DBPs were the dominant contributors to the estimated DBP-associated toxicity. While RO/AOP treatment preferentially reduced the concentrations of the more toxic brominated DBP species, BAC and GAC treatment favored brominated DBP species by removing DOC but not bromide. Comparing the total toxicity-weighted DBP concentration between reuse and drinking waters provides drinking water as a rational benchmark for water quality comparison, explicitly recognizes that contaminants occur as mixtures, provides utilities flexibility in selecting the most efficient treatment trains to reduce estimated toxicity, and can be expanded to encompass new contaminants as toxic potency data become available.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Desinfección
20.
Environ Sci Technol ; 53(2): 710-718, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30561992

RESUMEN

As an important class of soil minerals and a key constituent of colloidal particles in surface aquifers, smectite clays can strongly retain tetracyclines due to their large surface areas and high cation exchange capacities. However, the research on phototransformation of tetracyclines at smectite clay surfaces is rarely studied. Here, the phototransformation kinetics of tetracycline preadsorbed on two model smectite clays (hectorite and montmorillonite) exchanged with Na+, K+, or Ca2+ suspended in aqueous solution under simulated sunlight was compared with that of tetracycline dissolved in water using batch experiments. Adsorption on clays accelerated tetracycline phototransformation (half-lives shortened by 1.1-5.3 times), with the most significant effects observed for Na+-exchanged clays. Regardless of the presence or absence of clay, the phototransformation of tetracycline was facilitated by increasing pH from 4 to 7. Inhibition or enhancement of photolysis-induced reactive species combined with their measurement using scavenger/probe chemicals indicate that the facilitated production of self-photosensitized singlet oxygen (1O2) was the key factor contributing to the clay-enhanced phototransformation of tetracycline. As evidenced by the red shifts and the increased molar absorptivity in the UV-vis absorption spectra, the complexation of tetracycline with the negatively charged (Lewis base) sites on clay siloxane surfaces led to formation of the alkalized form, which has larger light absorption rate and is more readily to be oxidized compared to tetracycline in aqueous solution at equivalent pH. Our findings indicate a previously unrecognized, important phototransformation mechanism of tetracyclines catalyzed by smectite clays.


Asunto(s)
Arcilla , Tetraciclina , Adsorción , Catálisis , Bases de Lewis , Silicatos , Luz Solar , Tetraciclinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA