Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 62(14): 2216-2227, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37410993

RESUMEN

Polymyxins are important last resort antibiotics for the treatment of infections caused by multidrug-resistant Gram-negative pathogens. However, pathogens have acquired resistance to polymyxins through a pathway that modifies lipid A with 4-amino-4-deoxy-l-arabinose (Ara4N). Inhibition of this pathway is, therefore, a desirable strategy to combat polymyxin resistance. The first pathway-specific reaction is an NAD+-dependent oxidative decarboxylation of UDP-glucuronic acid (UDP-GlcA) catalyzed by the dehydrogenase domain of ArnA (ArnA_DH). We present the crystal structure of Salmonella enterica serovar typhimurium ArnA in complex with UDP-GlcA showing that binding of the sugar nucleotide is sufficient to trigger a conformational change conserved in bacterial ArnA_DHs but absent in its human homologs, as confirmed by structure and sequence analysis. Ligand binding assays show that the conformational change is essential for NAD+ binding and catalysis. Enzyme activity and binding assays show that (i) UDP-GlcA analogs lacking the 6' carboxylic acid bind the enzyme but fail to trigger the conformational change, resulting in poor inhibition, and (ii) the uridine monophosphate moiety of the substrate provides most of the ligand binding energy. Mutation of asparagine 492 to alanine (N492A) disrupts the ability of ArnA_DH to undergo the conformational change while retaining substrate binding, suggesting that N492 is involved in sensing the 6' carboxylate in the substrate. These results identify the UDP-GlcA-induced conformational change in ArnA_DH as an essential mechanistic step in bacterial enzymes, providing a platform for selective inhibition.


Asunto(s)
NAD , Polimixinas , Humanos , Polimixinas/farmacología , Polimixinas/química , Ligandos , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/metabolismo , Oxidorreductasas
2.
Proc Natl Acad Sci U S A ; 113(36): 10049-54, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27555591

RESUMEN

OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe(4+)-oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C-H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe(4+)-OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon-carbon scission reaction catalyzed by OleT.


Asunto(s)
Alquenos/química , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , Ácidos Grasos/química , Staphylococcaceae/química , Alquenos/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Carbono/química , Carbono/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Grasos/metabolismo , Cinética , Modelos Químicos , Oxidación-Reducción , Staphylococcaceae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA