Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431249

RESUMEN

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Asunto(s)
Sistema de Conducción Cardíaco , Macrófagos/fisiología , Animales , Conexina 43/metabolismo , Femenino , Atrios Cardíacos/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos Cardíacos/fisiología
2.
Circ Res ; 130(11): 1662-1681, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440172

RESUMEN

BACKGROUND: Perivascular fibrosis, characterized by increased amount of connective tissue around vessels, is a hallmark for vascular disease. Ang II (angiotensin II) contributes to vascular disease and end-organ damage via promoting T-cell activation. Despite recent data suggesting the role of T cells in the progression of perivascular fibrosis, the underlying mechanisms are poorly understood. METHODS: TF (transcription factor) profiling was performed in peripheral blood mononuclear cells of hypertensive patients. CD4-targeted KLF10 (Kruppel like factor 10)-deficient (Klf10fl/flCD4Cre+; [TKO]) and CD4-Cre (Klf10+/+CD4Cre+; [Cre]) control mice were subjected to Ang II infusion. End point characterization included cardiac echocardiography, aortic imaging, multiorgan histology, flow cytometry, cytokine analysis, aorta and fibroblast transcriptomic analysis, and aortic single-cell RNA-sequencing. RESULTS: TF profiling identified increased KLF10 expression in hypertensive human subjects and in CD4+ T cells in Ang II-treated mice. TKO mice showed enhanced perivascular fibrosis, but not interstitial fibrosis, in aorta, heart, and kidney in response to Ang II, accompanied by alterations in global longitudinal strain, arterial stiffness, and kidney function compared with Cre control mice. However, blood pressure was unchanged between the 2 groups. Mechanistically, KLF10 bound to the IL (interleukin)-9 promoter and interacted with HDAC1 (histone deacetylase 1) inhibit IL-9 transcription. Increased IL-9 in TKO mice induced fibroblast intracellular calcium mobilization, fibroblast activation, and differentiation and increased production of collagen and extracellular matrix, thereby promoting the progression of perivascular fibrosis and impairing target organ function. Remarkably, injection of anti-IL9 antibodies reversed perivascular fibrosis in Ang II-infused TKO mice and C57BL/6 mice. Single-cell RNA-sequencing revealed fibroblast heterogeneity with activated signatures associated with robust ECM (extracellular matrix) and perivascular fibrosis in Ang II-treated TKO mice. CONCLUSIONS: CD4+ T cell deficiency of Klf10 exacerbated perivascular fibrosis and multi-organ dysfunction in response to Ang II via upregulation of IL-9. Klf10 or IL-9 in T cells might represent novel therapeutic targets for treatment of vascular or fibrotic diseases.


Asunto(s)
Linfocitos T CD4-Positivos , Hipertensión , Angiotensina II/farmacología , Animales , Linfocitos T CD4-Positivos/metabolismo , Factores de Transcripción de la Respuesta de Crecimiento Precoz , Fibrosis , Humanos , Interleucina-9 , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN
3.
Genome Res ; 30(6): 860-873, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32461223

RESUMEN

Little is known about how human Y-Chromosome gene expression directly contributes to differences between XX (female) and XY (male) individuals in nonreproductive tissues. Here, we analyzed quantitative profiles of Y-Chromosome gene expression across 36 human tissues from hundreds of individuals. Although it is often said that Y-Chromosome genes are lowly expressed outside the testis, we report many instances of elevated Y-Chromosome gene expression in a nonreproductive tissue. A notable example is EIF1AY, which encodes eukaryotic translation initiation factor 1A Y-linked, together with its X-linked homolog EIF1AX Evolutionary loss of a Y-linked microRNA target site enabled up-regulation of EIF1AY, but not of EIF1AX, in the heart. Consequently, this essential translation initiation factor is nearly twice as abundant in male as in female heart tissue at the protein level. Divergence between the X and Y Chromosomes in regulatory sequence can therefore lead to tissue-specific Y-Chromosome-driven sex biases in expression of critical, dosage-sensitive regulatory genes.


Asunto(s)
Cromosomas Humanos Y , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genes Ligados a Y , Transcriptoma , Cromosomas Humanos X/genética , Biología Computacional/métodos , Evolución Molecular , Femenino , Perfilación de la Expresión Génica/métodos , Genes Ligados a X , Humanos , Masculino , MicroARNs/genética , Especificidad de Órganos/genética
4.
Am J Pathol ; 192(1): 112-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599881

RESUMEN

Severe coronavirus disease 2019 (COVID-19) increases the risk of myocardial injury that contributes to mortality. This study used multiparameter immunofluorescence to extensively examine heart autopsy tissue of 7 patients who died of COVID-19 compared to 12 control specimens, with or without cardiovascular disease. Consistent with prior reports, no evidence of viral infection or lymphocytic infiltration indicative of myocarditis was found. However, frequent and extensive thrombosis was observed in large and small vessels in the hearts of the COVID-19 cohort, findings that were infrequent in controls. The endothelial lining of thrombosed vessels typically lacked evidence of cytokine-mediated endothelial activation, assessed as nuclear expression of transcription factors p65 (RelA), pSTAT1, or pSTAT3, or evidence of inflammatory activation assessed by expression of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), tissue factor, or von Willebrand factor (VWF). Intimal EC lining was also generally preserved with little evidence of cell death or desquamation. In contrast, there were frequent markers of neutrophil activation within myocardial thrombi in patients with COVID-19, including neutrophil-platelet aggregates, neutrophil-rich clusters within macrothrombi, and evidence of neutrophil extracellular trap (NET) formation. These findings point to alterations in circulating neutrophils rather than in the endothelium as contributors to the increased thrombotic diathesis in the hearts of COVID-19 patients.


Asunto(s)
COVID-19 , Vasos Coronarios , Miocarditis , Miocardio , SARS-CoV-2/metabolismo , Trombosis , Anciano , Anciano de 80 o más Años , Plaquetas/metabolismo , Plaquetas/patología , COVID-19/metabolismo , COVID-19/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Miocarditis/metabolismo , Miocarditis/patología , Miocardio/metabolismo , Miocardio/patología , Activación Neutrófila , Neutrófilos/metabolismo , Neutrófilos/patología , Agregación Plaquetaria , Trombosis/metabolismo , Trombosis/patología
5.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047470

RESUMEN

Kidney injury molecule-1 (KIM-1) is a biomarker of renal injury and a predictor of cardiovascular disease. Aldosterone, via activation of the mineralocorticoid receptor, is linked to cardiac and renal injury. However, the impact of mineralocorticoid receptor activation and blockade on KIM-1 is uncertain. We investigated whether renal KIM-1 is increased in a cardiorenal injury model induced by L-NAME/ANG II, and whether mineralocorticoid receptor blockade prevents the increase in KIM-1. Since statin use is associated with lower aldosterone, we also investigated whether administering eiSther a lipophilic statin (simvastatin) or a hydrophilic statin (pravastatin) prevents the increase in renal KIM-1. Female Wistar rats (8-10 week old), consuming a high salt diet (1.6% Na+), were randomized to the following conditions for 14 days: control; L-NAME (0.2 mg/mL in drinking water)/ANG II (225 ug/kg/day on days 12-14); L-NAME/ANG II + eplerenone (100 mg/kg/day p.o.); L-NAME/ANG II + pravastatin (20 mg/kg/day p.o.); L-NAME/ANG II + simvastatin (20 mg/kg/day p.o.). Groups treated with L-NAME/ANG II had significantly higher blood pressure, plasma and urine aldosterone, cardiac injury/stroke composite score, and renal KIM-1 than the control group. Both eplerenone and simvastatin reduced 24-h urinary KIM-1 (p = 0.0046, p = 0.031, respectively) and renal KIM-1 immunostaining (p = 0.004, p = 0.037, respectively). Eplerenone also reduced renal KIM-1 mRNA expression (p = 0.012) and cardiac injury/stroke composite score (p = 0.04). Pravastatin did not affect these damage markers. The 24-h urinary KIM-1, renal KIM-1 immunostaining, and renal KIM-1 mRNA expression correlated with cardiac injury/stroke composite score (p < 0.0001, Spearman ranked correlation = 0.69, 0.66, 0.59, respectively). In conclusion, L-NAME/ANG II increases renal KIM-1 and both eplerenone and simvastatin blunt this increase in renal KIM-1.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertensión , Accidente Cerebrovascular , Animales , Femenino , Ratas , Aldosterona/metabolismo , Angiotensina II/metabolismo , Presión Sanguínea , Eplerenona/farmacología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hipertensión/metabolismo , Riñón/metabolismo , NG-Nitroarginina Metil Éster , Pravastatina/farmacología , Ratas Wistar , Receptores de Mineralocorticoides , ARN Mensajero/metabolismo , Simvastatina
6.
Am J Respir Crit Care Med ; 203(12): 1533-1545, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33523764

RESUMEN

Rationale: Data on the molecular mechanisms that regulate platelet-pulmonary endothelial adhesion under conditions of hypoxia are lacking, but may have important therapeutic implications. Objectives: To identify a hypoxia-sensitive, modifiable mediator of platelet-pulmonary artery endothelial cell adhesion and thrombotic remodeling. Methods: Network medicine was used to profile protein-protein interactions in hypoxia-treated human pulmonary artery endothelial cells. Data from liquid chromatography-mass spectrometry and microscale thermophoresis informed the development of a novel antibody (Ab) to inhibit platelet-endothelial adhesion, which was tested in cells from patients with chronic thromboembolic pulmonary hypertension (CTEPH) and three animal models in vivo. Measurements and Main Results: The protein NEDD9 was identified in the hypoxia thrombosome network in silico. Compared with normoxia, hypoxia (0.2% O2) for 24 hours increased HIF-1α (hypoxia-inducible factor-1α)-dependent NEDD9 upregulation in vitro. Increased NEDD9 was localized to the plasma-membrane surface of cells from control donors and patients with CTEPH. In endarterectomy specimens, NEDD9 colocalized with the platelet surface adhesion molecule P-selectin. Our custom-made anti-NEDD9 Ab targeted the NEDD9-P-selectin interaction and inhibited the adhesion of activated platelets to pulmonary artery endothelial cells from control donors in vitro and from patients with CTEPH ex vivo. Compared with control mice, platelet-pulmonary endothelial aggregates and pulmonary hypertension induced by ADP were decreased in NEDD9-/- mice or wild-type mice treated with the anti-NEDD9 Ab, which also decreased chronic pulmonary thromboembolic remodeling in vivo. Conclusions: The NEDD9-P-selectin protein-protein interaction is a modifiable target with which to inhibit platelet-pulmonary endothelial adhesion and thromboembolic vascular remodeling, with potential therapeutic implications for patients with disorders of increased hypoxia signaling pathways, including CTEPH.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adhesión Celular/fisiología , Hipoxia/fisiopatología , Circulación Pulmonar/fisiología , Embolia Pulmonar/fisiopatología , Transducción de Señal/fisiología , Animales , Plaquetas/fisiología , Células Cultivadas/fisiología , Células Endoteliales/fisiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Modelos Animales
7.
N Engl J Med ; 388(1): 71-78, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36599065
8.
N Engl J Med ; 388(17): e60, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37099344

Asunto(s)
Corazón , Humanos
9.
N Engl J Med ; 387(14): 1310-1316, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36198182
11.
Cytotherapy ; 19(6): 668-679, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28392314

RESUMEN

BACKGROUND AIMS: In this study, we demonstrate long-term persistence of human mesenchymal stromal cells (hMSCs) after intracoronary injection in a large animal model of pulmonary hypertension (PH). METHODS: Commercially available placenta-derived hMSCs were used. Experiments were conducted on 14 female Yorkshire swine. Four animals served as controls, and 10 underwent pulmonary vein (PV) banding. After 12 ± 2 weeks, PH and PV dysfunction were confirmed by right heart catheterization and cardiac magnetic resonance imaging. hMSCs were injected in the marginal branch of the right coronary artery. Tissues were harvested 6, 9 or 24 days after infusion. RESULTS: After 12 ± 2 weeks after PV banding, all subjects had increased mean pulmonary artery pressure (13.6 ± 3.6 versus 30.8 ± 4.5 mm Hg, P < 0.007) and a decrease in right ventricular ejection fraction from 51.7 ± 5.7% versus 30.5 ± 11.3% (P = 0.003). Intracoronary injection of hMSCs was well tolerated. Up to 24 days after hMSC injection, immunohistochemistry revealed extravascular viable human CD105+ mononuclear cells in the right ventricle (RV) that were Ki67+. This was confirmed by fluorescence in situ hybridization. CD45+ porcine inflammatory cells were identified, commonly seen adjacent to areas of healing microscopic infarction that likely dated to the time of the original hMSC injection. Anti-CD31 staining produced strong signals in areas of injected hMSCs. Immunohistochemistry staining for vascular cell adhesion molecule-1 showed upregulation in the clusters, where mononuclear cells were located. CONCLUSIONS: hMSCs injected via intracoronary infusion survived up to 24 days and demonstrated proliferative capacity. hMSCs can persist long term in the RV and are potential cell source for tissue repair in RV dysfunction.


Asunto(s)
Hipertensión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Miocardio/patología , Animales , Proliferación Celular , Femenino , Ventrículos Cardíacos/patología , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/mortalidad , Hibridación Fluorescente in Situ , Inyecciones Intraarteriales , Antígenos Comunes de Leucocito/genética , Células Madre Mesenquimatosas/metabolismo , Placenta/citología , Embarazo , Porcinos , Función Ventricular Derecha
12.
N Engl J Med ; 366(7): 619-28, 2012 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-22335739

RESUMEN

BACKGROUND: Dilated cardiomyopathy and hypertrophic cardiomyopathy arise from mutations in many genes. TTN, the gene encoding the sarcomere protein titin, has been insufficiently analyzed for cardiomyopathy mutations because of its enormous size. METHODS: We analyzed TTN in 312 subjects with dilated cardiomyopathy, 231 subjects with hypertrophic cardiomyopathy, and 249 controls by using next-generation or dideoxy sequencing. We evaluated deleterious variants for cosegregation in families and assessed clinical characteristics. RESULTS: We identified 72 unique mutations (25 nonsense, 23 frameshift, 23 splicing, and 1 large tandem insertion) that altered full-length titin. Among subjects studied by means of next-generation sequencing, the frequency of TTN mutations was significantly higher among subjects with dilated cardiomyopathy (54 of 203 [27%]) than among subjects with hypertrophic cardiomyopathy (3 of 231 [1%], P=3×10(-16)) or controls (7 of 249 [3%], P=9×10(-14)). TTN mutations cosegregated with dilated cardiomyopathy in families (combined lod score, 11.1) with high (>95%) observed penetrance after the age of 40 years. Mutations associated with dilated cardiomyopathy were overrepresented in the titin A-band but were absent from the Z-disk and M-band regions of titin (P≤0.01 for all comparisons). Overall, the rates of cardiac outcomes were similar in subjects with and those without TTN mutations, but adverse events occurred earlier in male mutation carriers than in female carriers (P=4×10(-5)). CONCLUSIONS: TTN truncating mutations are a common cause of dilated cardiomyopathy, occurring in approximately 25% of familial cases of idiopathic dilated cardiomyopathy and in 18% of sporadic cases. Incorporation of sequencing approaches that detect TTN truncations into genetic testing for dilated cardiomyopathy should substantially increase test sensitivity, thereby allowing earlier diagnosis and therapeutic intervention for many patients with dilated cardiomyopathy. Defining the functional effects of TTN truncating mutations should improve our understanding of the pathophysiology of dilated cardiomyopathy. (Funded by the Howard Hughes Medical Institute and others.).


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas Musculares/genética , Mutación , Proteínas Quinasas/genética , Adulto , Cardiomiopatía Dilatada/patología , Conectina , Femenino , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Miocardio/patología , Análisis de Secuencia de ADN/métodos , Eliminación de Secuencia
13.
Circulation ; 138(22): 2527-2529, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30571358
14.
Am J Pathol ; 180(6): 2184-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22551843

RESUMEN

Research articles on atherosclerosis have been well represented in The American Journal of Pathology (AJP), with more than 500 articles published since 1925. An initial focus on descriptive studies led to the proposal that atherosclerosis occurs as a response to vascular injury. With time, this view was modified by a greater understanding of the roles played by lipids and integrity of the vessel wall's constituent cells and matrix. AJP has been a major contributor to the field, publishing numerous seminal research papers and review articles on the latest advances in atherosclerosis. This Centennial Review highlights these myriad contributions.


Asunto(s)
Aterosclerosis/historia , Publicaciones Periódicas como Asunto/historia , Animales , Aterosclerosis/etiología , Aterosclerosis/patología , Investigación Biomédica/historia , Investigación Biomédica/tendencias , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Microscopía Electrónica , Modelos Biológicos , Músculo Liso Vascular/ultraestructura , Estados Unidos
15.
J Autoimmun ; 45: 80-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23830871

RESUMEN

Allograft vasculopathy is an accelerated intimal hyperplastic lesion leading to progressive vascular stenosis; it represents the major long-term limitation to successful solid organ transplant. Although allograft vasculopathy is not formally an autoimmune disease, nor does it constitute a major cause of cardiovascular disease on a purely numerical basis, its pathogenesis provides an important window on the mechanisms by which immune injury can drive more common vascular pathologic entities. Thus, insights gleaned from vascularized solid organ transplants can shed new mechanistic (and therapeutic) light on: 1) the intimal vascular responses accompanying typical atherosclerosis and other inflammatory vessel diseases (e.g., scleroderma); 2) the pathogenesis of vascular stenosis versus aneurysm formation; 3) the sources of intimal smooth muscle cells in the healing of any vascular injury; and 4) the mechanisms by which smooth muscle cells are recruited into intimal lesions. Indeed, research on allograft vasculopathy has led to the understanding that interferon-γ plays a similar pathogenic role in a host of vascular stenosing lesions-and that Th2 cytokines can drive vascular remodeling and aneurysm formation. Moreover, circulating precursors (and not just medial smooth muscle cells) contribute to the intimal hyperplasia seen in atherosclerosis and in-stent restenosis. That non-vessel smooth muscle cells can be recruited to sites of vessel injury further suggests that chemokine and adhesion molecule interactions may be viable targets to limit vascular stenosis in a wide range of vascular lesions. This review will describe the pathogenesis of allograft vasculopathy, and will relate how understanding the underlying pathways informs our understanding of both human transplant-associated disease, as well as other human vascular pathologies.


Asunto(s)
Constricción Patológica/prevención & control , Rechazo de Injerto/inmunología , Miocitos del Músculo Liso/inmunología , Trasplante de Órganos , Enfermedades Vasculares/inmunología , Animales , Constricción Patológica/etiología , Rechazo de Injerto/complicaciones , Humanos , Interferón gamma/inmunología , Células Th2/inmunología , Enfermedades Vasculares/complicaciones , Cicatrización de Heridas
17.
Circ Res ; 108(7): 857-61, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21330601

RESUMEN

RATIONALE: Two categories of cardiac stem cells (CSCs) with predominantly myogenic (mCSC) and vasculogenic (vCSC) properties have been characterized in the human heart. However, it is unknown whether functionally competent CSCs of both classes are present in the myocardium of patients affected by end-stage cardiac failure, and whether these cells can be harvested from relatively small myocardial samples. OBJECTIVE: To establish whether a clinically relevant number of mCSCs and vCSCs can be isolated and expanded from endomyocardial biopsies of patients undergoing cardiac transplantation or left ventricular assist device implantation. METHODS AND RESULTS: Endomyocardial biopsies were collected with a bioptome from the right side of the septum of explanted hearts or the apical LV core at the time of left ventricular assist device implantation. Two to 5 biopsies from each patient were enzymatically dissociated, and, after expansion, cells were sorted for c-kit (mCSCs) or c-kit and KDR (vCSCs) and characterized. mCSCs and vCSCs constituted 97% and 3% of the c-kit population, respectively. Population doubling time averaged 27 hours in mCSCs and vCSCs; 5×10(6) mCSCs and vCSCs were obtained in 28 and 41 days, respectively. Both CSC classes possessed significant growth reserve as documented by high telomerase activity and relatively long telomeres. mCSCs formed mostly cardiomyocytes, and vCSCs endothelial and smooth muscle cells. CONCLUSIONS: The growth properties of mCSCs and vCSCs isolated from endomyocardial biopsies from patients with advanced heart failure were comparable to those obtained previously from larger myocardial samples of patients undergoing elective cardiac surgery.


Asunto(s)
Células Madre Adultas/patología , Células Madre Adultas/fisiología , Cardiomiopatías/patología , Miocardio/patología , Adulto , Anciano , Biopsia , Cardiomiopatías/fisiopatología , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Femenino , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Telómero/patología
18.
Cardiovasc Pathol ; 63: 107495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36334690

RESUMEN

OBJECTIVES: We sought to develop a rigorous, systematic protocol for the dissection and preservation of human hearts for biobanking that expands previous success in postmortem transcriptomics to multiomics from paired tissue. BACKGROUND: Existing cardiac biobanks consist largely of biopsy tissue or explanted hearts in select diseases and are insufficient for correlating whole organ phenotype with clinical data. METHODS: We demonstrate optimal conditions for multiomics interrogation (ribonucleic acid (RNA) sequencing, untargeted metabolomics) in hearts by evaluating the effect of technical variables (storage solution, temperature) and simulated postmortem interval (PMI) on RNA and metabolite stability. We used bovine (n=3) and human (n=2) hearts fixed in PAXgene or snap-frozen with liquid nitrogen. RESULTS: Using a paired Wald test, only two of the genes assessed were differentially expressed between left ventricular samples from bovine hearts stored in PAXgene at 0 and 12 hours PMI (FDR q<0.05). We obtained similar findings in human left ventricular samples, suggesting stability of RNA transcripts at PMIs up to 12 hours. Different library preparation methods (mRNA poly-A capture vs. rRNA depletion) resulted in similar quality metrics with both library preparations achieving >95% of reads properly aligning to the reference genomes across all PMIs for bovine and human hearts. PMI had no effect on RNA Integrity Number or quantity of RNA recovered at the time points evaluated. Of the metabolites identified (855 total) using untargeted metabolomics of human left ventricular tissue, 503 metabolites remained stable across PMIs (0, 4, 8, 12 hours). Most metabolic pathways retained several stable metabolites. CONCLUSIONS: Our data demonstrate a technically rigorous, reproducible protocol that will enhance cardiac biobanking practices and facilitate novel insights into human CVD. CONDENSED ABSTRACT: Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Current biobanking practices insufficiently capture both the diverse array of phenotypes present in CVDs and the spatial heterogeneity across cardiac tissue sites. We have developed a rigorous and systematic protocol for the dissection and preservation of human cardiac biospecimens to enhance the availability of whole organ tissue for multiple applications. When combined with longitudinal clinical phenotyping, our protocol will enable multiomics in hearts to deepen our understanding of CVDs.


Asunto(s)
Bancos de Muestras Biológicas , Enfermedades Cardiovasculares , Humanos , Bovinos , Animales , Multiómica , Corazón , ARN/genética
19.
Science ; 381(6654): 231-239, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37440641

RESUMEN

Atrial fibrillation disrupts contraction of the atria, leading to stroke and heart failure. We deciphered how immune and stromal cells contribute to atrial fibrillation. Single-cell transcriptomes from human atria documented inflammatory monocyte and SPP1+ macrophage expansion in atrial fibrillation. Combining hypertension, obesity, and mitral valve regurgitation (HOMER) in mice elicited enlarged, fibrosed, and fibrillation-prone atria. Single-cell transcriptomes from HOMER mouse atria recapitulated cell composition and transcriptome changes observed in patients. Inhibiting monocyte migration reduced arrhythmia in Ccr2-∕- HOMER mice. Cell-cell interaction analysis identified SPP1 as a pleiotropic signal that promotes atrial fibrillation through cross-talk with local immune and stromal cells. Deleting Spp1 reduced atrial fibrillation in HOMER mice. These results identify SPP1+ macrophages as targets for immunotherapy in atrial fibrillation.


Asunto(s)
Fibrilación Atrial , Macrófagos , Osteopontina , Animales , Humanos , Ratones , Fibrilación Atrial/genética , Fibrilación Atrial/inmunología , Atrios Cardíacos , Macrófagos/inmunología , Insuficiencia de la Válvula Mitral/genética , Osteopontina/genética , Eliminación de Gen , Movimiento Celular , Análisis de Expresión Génica de una Sola Célula
20.
Circulation ; 124(25): 2920-32, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22144572

RESUMEN

BACKGROUND: The calcium-binding proteins myeloid-related protein (MRP)-8 (S100A8) and MRP-14 (S100A9) form MRP-8/14 heterodimers (S100A8/A9, calprotectin) that regulate myeloid cell function and inflammatory responses and serve as early serum markers for monitoring acute allograft rejection. Despite functioning as a proinflammatory mediator, the pathophysiological role of MRP-8/14 complexes in cardiovascular disease is incompletely defined. This study investigated the role of MRP-8/14 in cardiac allograft rejection using MRP-14(-/-) mice that lack MRP-8/14 complexes. METHODS AND RESULTS: We examined parenchymal rejection after major histocompatibility complex class II allomismatched cardiac transplantation (bm12 donor heart and B6 recipients) in wild-type (WT) and MRP-14(-/-) recipients. Allograft survival averaged 5.9±2.9 weeks (n=10) in MRP-14(-/-) recipients compared with >12 weeks (n=15; P<0.0001) in WT recipients. Two weeks after transplantation, allografts in MRP-14(-/-) recipients had significantly higher parenchymal rejection scores (2.8±0.8; n=8) than did WT recipients (0.8±0.8; n=12; P<0.0001). Compared with WT recipients, allografts in MRP-14(-/-) recipients had significantly increased T-cell and macrophage infiltration and increased mRNA levels of interferon-γ and interferon-γ-associated chemokines (CXCL9, CXCL10, and CXCL11), interleukin-6, and interleukin-17 with significantly higher levels of Th17 cells. MRP-14(-/-) recipients also had significantly more lymphocytes in the adjacent para-aortic lymph nodes than did WT recipients (cells per lymph node: 23.7±0.7×10(5) for MRP-14(-/-) versus 6.0±0.2×10(5) for WT; P<0.0001). The dendritic cells (DCs) of the MRP-14(-/-) recipients of bm12 hearts expressed significantly higher levels of the costimulatory molecules CD80 and CD86 than did those of WT recipients 2 weeks after transplantation. Mixed leukocyte reactions with allo-endothelial cell-primed MRP-14(-/-) DCs resulted in significantly higher antigen-presenting function than reactions using WT DCs. Ovalbumin-primed MRP-14(-/-) DCs augmented proliferation of OT-II (ovalbumin-specific T cell receptor transgenic) CD4(+) T cells with increased interleukin-2 and interferon-γ production. Cardiac allografts of B6 major histocompatibility complex class II(-/-) hosts and of B6 WT hosts receiving MRP-14(-/-) DCs had significantly augmented inflammatory cell infiltration and accelerated allograft rejection compared with WT DCs from transferred recipient allografts. Bone marrow-derived MRP-14(-/-) DCs infected with MRP-8 and MRP-14 retroviral vectors showed significantly decreased CD80 and CD86 expression compared with controls, indicating that MRP-8/14 regulates B7-costimulatory molecule expression. CONCLUSIONS: Our results indicate that MRP-14 regulates B7 molecule expression and reduces antigen presentation by DCs and subsequent T-cell priming. The absence of MRP-14 markedly increased T-cell activation and exacerbated allograft rejection, indicating a previously unrecognized role for MRP-14 in immune cell biology.


Asunto(s)
Calgranulina A/inmunología , Calgranulina B/inmunología , Rechazo de Injerto/metabolismo , Trasplante de Corazón/inmunología , Animales , Antígenos B7/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Citocinas/genética , Citocinas/metabolismo , Supervivencia de Injerto/inmunología , Histocompatibilidad/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/inmunología , Complejo de Antígeno L1 de Leucocito/metabolismo , Prueba de Cultivo Mixto de Linfocitos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Ácido Retinoico/inmunología , Receptores de Ácido Retinoico/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Trasplante Homólogo , Receptor de Ácido Retinoico gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA