Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Biosci Biotechnol Biochem ; 85(9): 1945-1952, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34244709

RESUMEN

Various diterpene synthases have been functionally identified in cultivated rice (Oryza sativa). These are the homologs of ent-copalyl diphosphate (ent-CDP) synthase and ent-kaurene synthase (KS) that are responsible for the biosynthesis of gibberellins, diterpenoid phytohormones. We isolated a cDNA encoding full-length OsKSL12, a previously uncharacterized KS like (KSL) enzyme that consists of a ß-domain and an α-domain with an active center, but lacks an N-terminal γ-domain. Functional analysis using a bacterial expression system showed that recombinant OsKSL12 converted ent-CDP into ent-manool or ent-13-epi-manool. Comparative genomics revealed that functional OsKSL12 homologs exist in diverse wild species in the Oryzeae-Oryza nivara (Oryza rufipogon), Oryza coarctata, Oryza granulata, Leersia perrieri, and Leersia tisseranti. KSL12 homologs in O. granulata, L. perrieri, and L. tisseranti preferentially reacted with geranylgeranyl diphosphate rather than ent-CDP, resulting in geranyllinalool rather than ent-manool or ent-13-epi-manool as the main product, meaning that KSL12 functionally diversified during evolution in the Oryzeae.


Asunto(s)
Transferasas Alquil y Aril/análisis , Diterpenos/química , Oryza/enzimología , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Evolución Molecular , Genoma de Planta , Oryza/genética , Filogenia , Dominios Proteicos
2.
Arch Virol ; 164(1): 17-25, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30225520

RESUMEN

Oral inoculation of entomopoxvirus spindles, microstructures composed of fusolin protein, causes disruption of the peritrophic matrix (PM), a physical barrier against microbe infection, in the insect midgut. Although the atomic structure of fusolin has been determined, little has been directly elucidated of the mechanism of disruption of the PM. In the present study, we first performed an immunohistochemical examination to determine whether fusolin acts on the PM directly or indirectly in the midgut of Bombyx mori larvae that were inoculated with spindles of Anomala cuprea entomopoxvirus. This revealed that the PM, rather than the midgut cells, was the attachment site for fusolin. Fusolin broadly attached to the PM from the anterior to the posterior region, both to its ectoperitrophic and endoperitrophic surfaces and within the PM. These results likely explain why the whole of the PM is rapidly disintegrated. Second, we administered protease inhibitors mixed with spindles and observed decreased midgut protease activity and reduced disruption of the PM. This suggests that midgut protease(s) is also positively involved in PM disruption. Based on the present results, we propose an overall mechanism for the disruption of the PM by administration of fusolin.


Asunto(s)
Bombyx/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Proteínas Virales/farmacología , Administración Oral , Animales , Insecticidas/farmacología , Larva/efectos de los fármacos
3.
Biochem Biophys Res Commun ; 503(3): 1221-1227, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30005875

RESUMEN

Cultivated rice (Oryza sativa; Os) produces a variety of labdane-related diterpenoids; not only phytohormone gibberellins (GAs) but also phytoalexins for defense including phytocassanes, momilactones and oryzalexins. Their carbon skeleton diterpenes are constructed from geranylgeranyl diphosphate via ent-copalyl diphosphate (ent-CDP) or its diastereomer syn-CDP. These two-step reactions are successively catalyzed by homologs of the two diterpene synthases, ent-CDP synthase (ent-CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of GAs; e.g. OsCPS4 and OsKSL8 that are involved in the biosynthesis of oryzalexin S, a rice phytoalexin. Oryza brachyantha (Ob) is the most distant wild rice species from Os among the Oryza genus. We previously reported that the Ob genome contains ObCPS_11g, ObKSL8-a, ObKSL8-b and ObKSL8-c for specialized metabolism at a locus similar to the OsKSL8 locus on chromosome 11. These Ob genes are closely related to OsCPS4 and OsKSL8, respectively. We herein characterize the diterpene synthase genes in Ob, using functional analyses and expression analysis. Recombinant OsKSL8 and ObKSL8-a showed the same in vitro function when syn-CDP or normal-CDP were used as substrates. Nonetheless, our results suggest that Ob produces normal-CDP-related diterpenoid phytoalexins, presumably via ObKSL8-a, while Os produces a syn-CDP-related phytoalexin, oryzalexin S, via OsKSL8. This difference must be due to the kinds of CPS that are present in each species; Os has OsCPS4 encoding syn-CPS, while Ob has ObCPS_11g encoding normal-CPS. Thus, we propose the evolutionary history underlying oryzalexin S biosynthesis: the gain of a syn-CPS was a critical event allowing the biosynthesis of oryzalexin S.


Asunto(s)
Transferasas Alquil y Aril/genética , Diterpenos/metabolismo , Oryza/enzimología , Oryza/genética , Sesquiterpenos/metabolismo , Transferasas Alquil y Aril/metabolismo , Oryza/metabolismo , Filogenia , Semillas/enzimología , Semillas/genética , Sesquiterpenos/química , Especificidad de la Especie , Fitoalexinas
4.
Proc Natl Acad Sci U S A ; 112(13): 3973-8, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25787255

RESUMEN

The great benefits that chemical pesticides have brought to agriculture are partly offset by widespread environmental damage to nontarget species and threats to human health. Microbial bioinsecticides are considered safe and highly specific alternatives but generally lack potency. Spindles produced by insect poxviruses are crystals of the fusolin protein that considerably boost not only the virulence of these viruses but also, in cofeeding experiments, the insecticidal activity of unrelated pathogens. However, the mechanisms by which spindles assemble into ultra-stable crystals and enhance virulence are unknown. Here we describe the structure of viral spindles determined by X-ray microcrystallography from in vivo crystals purified from infected insects. We found that a C-terminal molecular arm of fusolin mediates the assembly of a globular domain, which has the hallmarks of lytic polysaccharide monooxygenases of chitinovorous bacteria. Explaining their unique stability, a 3D network of disulfide bonds between fusolin dimers covalently crosslinks the entire crystalline matrix of spindles. However, upon ingestion by a new host, removal of the molecular arm abolishes this stabilizing network leading to the dissolution of spindles. The released monooxygenase domain is then free to disrupt the chitin-rich peritrophic matrix that protects insects against oral infections. The mode of action revealed here may guide the design of potent spindles as synergetic additives to bioinsecticides.


Asunto(s)
Factores de Virulencia/química , Virus/química , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Quitina/química , Cristalización , Cristalografía por Rayos X , Disulfuros/química , Insectos , Insecticidas/química , Sustancias Macromoleculares , Oxigenasas de Función Mixta/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxígeno/química , Oxigenasas/química , Polisacáridos , Poxviridae/metabolismo , Estructura Terciaria de Proteína , Proteínas Virales/química , Virulencia , Factores de Virulencia/fisiología
5.
Plant J ; 87(3): 293-304, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27133567

RESUMEN

Plants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane-related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate. The two gene clusters consist of genes encoding diterpene synthases and chemical-modification enzymes including P450s. In contrast, genes for the biosynthesis of gibberellins, which are labdane-related phytohormones, are scattered throughout the rice genome similar to other plant genomes. The mechanism of operon-like gene cluster formation remains undefined despite previous studies in other plant species. Here we show an evolutionary insight into the rice gene clusters by a comparison with wild Oryza species. Comparative genomics and biochemical studies using wild rice species from the AA genome lineage, including Oryza barthii, Oryza glumaepatula, Oryza meridionalis and the progenitor of Asian cultivated rice Oryza rufipogon indicate that gene clustering for biosynthesis of momilactones and phytocassanes had already been accomplished before the domestication of rice. Similar studies using the species Oryza punctata from the BB genome lineage, the distant FF genome lineage species Oryza brachyantha and an outgroup species Leersia perrieri suggest that the phytocassane biosynthetic gene cluster was present in the common ancestor of the Oryza species despite the different locations, directions and numbers of their member genes. However, the momilactone biosynthetic gene cluster evolved within Oryza before the divergence of the BB genome via assembly of ancestral genes.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Diterpenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Familia de Multigenes/fisiología , Oryza/genética , Proteínas de Plantas/genética , Fitoalexinas
6.
Biochem Biophys Res Commun ; 480(3): 402-408, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27771250

RESUMEN

Cultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa. Consequently, a variety of labdane-related diterpenoids, including phytoalexin phytocassanes, momilactones and oryzalexins, have been identified from cultivated rice. Our previous report indicated that the biosynthesis of phytocassanes and momilactones is conserved in Oryza rufipogon, the progenitor of Asian cultivated rice. Moreover, their biosynthetic gene clusters, containing OsCPS2 and OsKSL7 for phytocassane biosynthesis and OsCPS4 and OsKSL4 for momilactone biosynthesis, are also present in the O. rufipogon genome. We herein characterized O. rufipogon homologs of OsKSL5, OsKSL6, OsKSL8 responsible for oryzalexin S biosynthesis, and OsKSL10 responsible for oryzalexins A-F biosynthesis, to obtain more evolutionary insight into diterpenoid biosynthesis in O. sativa. Our phytoalexin analyses showed that no accumulation of oryzalexins was detected in extracts from O. rufipogon leaf blades. In vitro functional analyses indicated that unlike OsKSL10, O. rufipogon KSL10 functions as an ent-miltiradiene synthase, which explains the lack of accumulation of oryzalexins A-F in O. rufipogon. The different functions of KSL5 and KSL8 in O. sativa japonica to those in indica are conserved in each type of O. rufipogon, while KSL6 functions (ent-isokaurene synthases) are well conserved. Our study suggests that O. sativa japonica has evolved distinct specialized diterpenoid metabolism, including the biosynthesis of oryzalexins.


Asunto(s)
Transferasas Alquil y Aril/genética , Evolución Molecular , Genes de Plantas/genética , Oryza/clasificación , Oryza/genética , Secuencia Conservada , Genoma de Planta/genética , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
7.
Biochem Biophys Res Commun ; 460(3): 766-71, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25824047

RESUMEN

The rice genome contains a family of kaurene synthase-like (OsKSL) genes that are responsible for the biosynthesis of various diterpenoids, including gibberellins and phytoalexins. While many OsKSL genes have been functionally characterized, the functionality of OsKSL2 is still unclear and it has been proposed to be a pseudogene. Here, we found that OsKSL2 is drastically induced in roots by methyl jasmonate treatment and we successfully isolated a full-length cDNA for OsKSL2. Sequence analysis of the OsKSL2 cDNA revealed that the open reading frame of OsKSL2 is mispredicted in the two major rice genome databases, IRGSP-RAP and MSU-RGAP. In vitro conversion assay indicated that recombinant OsKSL2 catalyzes the cyclization of ent-CDP into ent-beyerene as a major and ent-kaurene as a minor product. ent-Beyerene is an antimicrobial compound and OsKSL2 is induced by methyl jasmonate; these data suggest that OsKSL2 is a functional ent-beyerene synthase that is involved in defense mechanisms in rice roots.


Asunto(s)
Transferasas Alquil y Aril/genética , Genes de Plantas , Oryza/genética , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Cloroplastos/enzimología , Cartilla de ADN , ADN Complementario , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
8.
J Exp Bot ; 66(1): 369-76, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25336684

RESUMEN

Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A-E, and oryzalexins A-F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT-PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/genética , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Distribución Tisular
9.
Physiol Plant ; 150(1): 55-62, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23621683

RESUMEN

A variety of labdane-related diterpenoids, including phytocassanes, oryzalexins and momilactones, were identified as phytoalexins in rice (Oryza sativa L.). Momilactone B was also isolated as an allelochemical exuded from rice roots. The biosynthetic genes of these phytoalexins have been identified, including six labdane-related diterpene cyclase genes such as OsCPS2, OsCPS4, OsKSL4, OsKSL7, OsKSL8 and OsKSL10. Here we identified an OsCPS4 knockdown mutant, cps4-tos, by screening Tos17 mutant lines using polymerase chain reaction. OsCPS4 encodes a syn-copalyl diphosphate synthase responsible for momilactones and oryzalexin S biosynthesis. Because Tos17 was inserted into the third intron of OsCPS4, the mature OsCPS4 mRNA was detected in the cps4-tos mutant as well as the wild type. Nevertheless, mature OsCPS4 transcript levels in the cps4-tos mutant were about one sixth those in the wild type. The cps4-tos mutant was more susceptible to rice blast fungus than the wild type, possibly due to lower levels of momilactones and oryzalexin S in the mutant. Moreover, co-cultivation experiments suggested that the allelopathic effect of cps4-tos against some kinds of lowland weeds was significantly lower than that of the wild type, probably because of lower momilactone content exuded from cps4-tos roots. A reverse-genetic strategy using the cps4-tos mutant showed the possible roles of momilactones not only as phytoalexins but also as allelopathic substances.


Asunto(s)
Transferasas Alquil y Aril/química , Diterpenos/metabolismo , Lactonas/química , Oryza/química , Oryza/fisiología , Proteínas de Plantas/fisiología , Sesquiterpenos/síntesis química , Transferasas Alquil y Aril/genética , Alelopatía , Resistencia a la Enfermedad/genética , Técnicas de Silenciamiento del Gen , Mutagénesis Insercional , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa , Retroelementos , Sesquiterpenos/farmacología , Fitoalexinas
10.
Virus Res ; 347: 199418, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38880337

RESUMEN

Although it is generally believed that large DNA viruses capture genes by horizontal gene transfer (HGT), the detailed manner of such transfer has not been fully elucidated. Here, we searched for genes in the coleopteran entomopoxvirus (EV) Anomala cuprea entomopoxvirus (ACEV) that might have been gained by ACEV by HGT. We classified the potential source organisms for HGT into three categories: the host A. cuprea; other organisms, including viruses unrelated to EVs; and organisms with uncertain host attribution. Of the open reading frames (ORFs) of the ACEV genome, 2.1 % were suggested to have been gained from the host by ACEV or its recent ancestor via HGT; 8.7 % were possibly from organisms other than the host, and 3.7 % were possibly from the third category of organisms via HGT. The analysis showed that ACEV contains some interesting ORFs obtained by HGT, including a large ATP-binding cassette protein (ABC transporter) ORF and a tenascin ORF (IDs ACV025 and ACV123, respectively). We then performed a detailed analysis of the HGT of the ACEV large ABC transporter ORF-the largest of the ACEV ORFs. mRNA sequences obtained by RNA-seq from fat bodies-sites of ACEV replication-and midgut tissues-sites of initial infection-of the virus's host A. cuprea larvae were subjected to BLAST analysis. One type of ABC transporter ORF from the fat bodies and two types from the midgut tissues, one of which was identical to that in the fat bodies, had the greatest identity to the ABC transporter ORF of ACEV. The two types from the host had high levels of identity to each other (approximately 95 % nucleotide sequence identity), strongly suggesting that the host ABC transporter group consisting of the two types was the origin of ACV025. We then determined the sequence (12,381 bp) containing a full-length gene of the A. cuprea ABC transporter. It turned out to be a transcription template for the abovementioned mRNA found in both tissues. In addition, we determined a large part (ca. 6.9 kb) of the template sequence for the mRNA found only in the midgut tissues. The results showed that the ACEV ABC transporter ORF is missing parts corresponding to introns of the host ABC transporter genes, indicating that the ORF was likely acquired by HGT in the form of mRNA. The presence of definite duplicated sequences adjacent to the ACEV ABC transporter genes-a sign of LINE-1 retrotransposon-mediated HGT-was not observed. An approximately 2-month ACV025 transcription experiment suggested that the transporter sequence is presumed to be continuously functional. The amino acid sequence of ACV025 suggests that its product might function in the regulation of phosphatide in the host-cell membranes.

11.
Virus Genes ; 45(3): 610-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22899338

RESUMEN

The Epinotia aporema Granulovirus GP37 protein gene has been identified, located, and sequenced. This gene was similar to other baculovirus gp37, to entomopoxvirus fusolin gene, and to the chitin-binding protein gene of bacteria. Sequence analysis indicated that the open reading frame is 669 bp long (the smallest gp37 sequenced at present) and encodes a predicted 222-amino acid protein. This protein is glycosylated and specifically recognized by an entomopoxvirus fusolin antiserum. The pairwise comparison of EpapGV gp37 gene product with all the baculovirus sequences in GenBank yields high similarity values ranging from 45 to 63 % with Cydia pomonella Granulovirus gp37 being the most closely related. The phylogenetic analysis interestingly grouped the granuloviruses in a cluster more closely related to entomopoxviruses than to nucleopolyhedroviruses, suggesting a possible horizontal transfer event between the granulovirus group and the entomopoxvirus group.


Asunto(s)
Entomopoxvirinae/genética , Genes Virales , Granulovirus/genética , Proteínas del Envoltorio Viral/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Entomopoxvirinae/clasificación , Entomopoxvirinae/inmunología , Entomopoxvirinae/patogenicidad , Transferencia de Gen Horizontal , Glicosilación , Granulovirus/clasificación , Granulovirus/inmunología , Granulovirus/patogenicidad , Sueros Inmunes/inmunología , Lepidópteros/virología , Sistemas de Lectura Abierta , Filogenia , Homología de Secuencia de Aminoácido , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
12.
Biosci Biotechnol Biochem ; 76(3): 544-50, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22451398

RESUMEN

DELLA proteins are negative regulators of the signaling of gibberellin (GA), a phytohormone regulating plant growth. DELLA degradation is triggered by its interaction with GID1, a soluble GA receptor, in the presence of bioactive GA. We isolated cDNA from a spliced variant of LsDELLA1 mRNA in lettuce, and named it LsDELLA1sv. It was deduced that LsDELLA1sv encodes truncated LsDELLA1, which has DELLA and VHYNP motifs at the N terminus but lacks part of the C-terminal GRAS domain. The recombinant LsDELLA1sv protein interacted with both Arabidopsis GID1 and lettuce GID1s in the presence of GA. A yeast two-hybrid assay suggested that LsDELLA1sv interacted with LsDELLA1. The ratio of LsDELLA1sv to LsDELLA1 transcripts was higher in flower samples at the late reproductive stage and seed samples (dry seeds and imbibed seeds) than in the other organ samples examined. This study suggests that LsDELLA1sv is a possible modulator of GA signaling in lettuce.


Asunto(s)
Giberelinas/metabolismo , Lactuca/citología , Lactuca/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Regulación de la Expresión Génica de las Plantas , Lactuca/genética , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo
13.
In Vitro Cell Dev Biol Anim ; 58(7): 610-618, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35867318

RESUMEN

Insect contractile cells frequently appear at an early phase of cell culture, but in most cases, they disappear before a continuous cell line is established, so the cell line ceases to contract. Continuous contractile insect cell lines are currently available from only one species each of Hymenoptera and Diptera. Here, we obtained a new cell line that contracted long after being established as a continuous cell line. The cell line contracted for a short period at an early phase of insect cell culture before a continuous cell line was established, but then did not contract again for several years. After this cell line entered the continuous growth phase, it produced spontaneously contractile tissues for about 4 mo but stopped contracting again. This is the first instance of a cell line that contracted after its establishment as a non-contractile continuous cell line. It is unclear whether the contractile cells survive or die after contraction ceases at an early phase of cell culture, and our results indicate that potential contractile cells survive for years after they stop to contract. The cells of this line sometimes produced complex contractile structures, such as sheet-like tissues. Only a few continuous cell lines have been derived from scarabaeid beetles. The new continuous cell line was derived from the culture of the fat bodies of the scarab beetle Anomala cuprea, which is a pest in the agriculture and forestry of Japan. The population doubling time of the new cell line was 2.5 d and thus it grows very rapidly among coleopteran continuous cell lines. Our new cell line will facilitate research on the physiology and pathology of Coleoptera, including scarab beetles, and may also contribute to research on invertebrate muscles.


Asunto(s)
Escarabajos , Animales , Técnicas de Cultivo de Célula , Línea Celular
14.
Biosci Biotechnol Biochem ; 75(12): 2398-400, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22146725

RESUMEN

A previous study generated lettuce (Lactuca sativa) mutant lines tagged by retrotransposon Tnt1 from tobacco (Nicotiana tabacum) and identified a homozygous mutant, Tnt6a, that exhibited severe dwarf phenotype. Here we show that Tnt1 is inserted into the intron of gibberellin biosynthetic gene LsGA3ox1 in Tnt6a mutants. Expression analysis suggests that LsGA3ox1 is nearly knocked out in the Tnt6a mutants.


Asunto(s)
Genes de Plantas/genética , Giberelinas/biosíntesis , Lactuca/genética , Lactuca/metabolismo , Mutación , Secuencia de Bases , Intrones/genética , Retroelementos/genética
15.
J Insect Sci ; 11: 92, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21870980

RESUMEN

Some intracellular symbionts of arthropods induce a variety of reproductive alterations in their hosts, and the alterations tend to spread easily within the host populations. A few cases involving the spread of alteration-inducing Wolbachia bacteria in natural populations with time have been reported, but the investigations on the increasing trend in counteracting the bacterial effect on hosts in natural populations (i.e., increased resistance in hosts against the alterations) have been limited. In the present study, the prevalence of an alteration, killing of male Hypolimnas bolina (L.) (Lepidoptera: Nymphalidae) butterflies by their inherited Wolbachia strain in the wild in Japan, was surveyed over a continuous 50-year period, which is far longer than ever before analyzed in studies of dynamics between reproductive alteration-inducing symbionts and their host arthropods. Thus, the results in this study provide the first instance of a long-term trend involving a change in reproductive alteration; and it strongly suggests a change in the opposite direction (i.e., suppression of male-killing) in natural populations. This change in the current combination of the Wolbachia and butterflies appears to be dependent upon the host taxon (race).


Asunto(s)
Mariposas Diurnas/microbiología , Interacciones Huésped-Patógeno , Wolbachia/fisiología , Animales , Evolución Biológica , Mariposas Diurnas/genética , Mariposas Diurnas/inmunología , Femenino , Masculino , Reproducción , Simbiosis
16.
J Virol ; 82(24): 12406-15, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18829750

RESUMEN

The spindles of Anomala cuprea entomopoxvirus (AncuEPV), which are composed of glycoprotein fusolin, are known to enhance the peroral infectivity of AncuEPV itself and of nucleopolyhedroviruses. This has been demonstrated to involve the disruption of intestinal peritrophic membrane (PM), composed of chitin matrix, glycosaminoglycans, and proteins. To identify essential and nonessential regions for this enhancement activity, AncuEPV fusolin and its deletion mutants were expressed in Sf21 cells using a baculovirus system, and their enhancement abilities were analyzed. The recombinant fusolin enhanced the peroral infectivity of Bombyx mori nucleopolyhedrovirus up to 320-fold and facilitated the infection of host insect with AncuEPV. Deletion mutagenesis revealed that the N-terminal region (amino acids 1 to 253), a possible chitin-binding domain, is essential for the enhancement of infection, whereas the C-terminal region is entirely dispensable. The glycosylation-defective mutants N191Q, whose Asn(191) is replaced with Gln, and DeltaSIG, whose signal peptide is deleted, showed considerably reduced and abolished enhancing activities, respectively, indicating that the carbohydrate chain is important in the enhancing activity. Interestingly, the C-terminal dispensable region was digested by a serine protease(s) in insect digestive juice. Moreover, both the N-terminal conserved region and the carbohydrate chain were necessary not only for chitin binding but also for stability in digestive juice. A triple amino acid replacement mutant, IHE (Ile-His-Glu(161) to Ala-Ala-Ala), was stable in digestive juice and had chitin-binding ability but did not retain its enhancing activity. These results suggest that the enhancement of infectivity involves more than the tolerance to digestive juice and chitin-binding ability.


Asunto(s)
Sistema Digestivo/metabolismo , Entomopoxvirinae/metabolismo , Proteínas Virales/metabolismo , Animales , Bombyx/genética , Bombyx/metabolismo , Bombyx/virología , Quitina/metabolismo , Escarabajos/genética , Escarabajos/metabolismo , Escarabajos/virología , Sistema Digestivo/virología , Entomopoxvirinae/genética , Expresión Génica , Glicosilación , Mutación/genética , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
17.
J Org Chem ; 74(4): 1541-8, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19161275

RESUMEN

The presence of the geranylgeranyl diphosphate synthase (GGS) gene is a common feature of gene clusters for diterpene biosynthesis. We demonstrated identification of a diterpene gene cluster using homology-based PCR of GGS genes and the subsequent genome walking in the fungus Phomopsis amygdali N2. Structure determination of a novel diterpene hydrocarbon phomopsene provided by enzymatic synthesis with the recombinant terpene synthase PaPS and screening of fungal broth extracts with reference to characteristic NMR signals of phomopsene allowed us to isolate a new diterpene, methyl phomopsenonate. The versatility of the gene-based screening of unidentified diterpenes is discussed in regard to fungal genomic data.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Diterpenos/análisis , Diterpenos/metabolismo , Genes Fúngicos , Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Ascomicetos/enzimología , Clonación Molecular , Dimetilaliltranstransferasa/metabolismo , Diterpenos/química , Genoma Fúngico/genética , Espectroscopía de Resonancia Magnética , Familia de Multigenes , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN
18.
Biosci Biotechnol Biochem ; 73(3): 772-5, 2009 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-19270400

RESUMEN

In vitro assays using recombinant enzymes enabled three cDNAs encoding ent-copalyl diphosphate synthases to be identified in wheat (Triticum aestivum): TaCPS1, TaCPS2, and TaCPS3. The phylogenetic tree and expression analyses suggest that TaCPS3 is responsible for gibberellin biosynthesis, while TaCPS1 and TaCPS2 are possible functional homologs of diterpene cyclase genes OsCPS2 and OsCPS4 involved in phytoalexin biosynthesis in rice.


Asunto(s)
Transferasas Alquil y Aril/genética , ADN Complementario/genética , Evolución Molecular , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Terpenos/metabolismo , Triticum/enzimología , Clonación Molecular , Genes de Plantas/genética , Filogenia , Sesquiterpenos , Triticum/genética , Fitoalexinas
19.
J Insect Physiol ; 117: 103912, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31301311

RESUMEN

The peritrophic membrane (or peritrophic matrix: PM) is a thin membranous structure that lies along the midgut epithelium in the midgut lumen and consists of chitin and proteins. PM exists between ingested food material and midgut epithelium cells and it is on the frontline of insect-plant and insect-microbe interactions. Therefore, proteins that play major roles in plant defense against herbivorous insects and in microbial attack on insects should penetrate, destroy or modify the PM to accomplish their roles. Recently, it has become clear that some proteins crucial to plant defense or microbial attack have the PM as their primary target. In addition, several plant defense proteins have been reported to affect the PM, although it is still unclear whether the PM is their primary target. This review introduces several of these proteins: fusolin and enhancin, two proteins produced by insect viruses that greatly enhance infection of the viruses by disrupting the PM; the MLX56 family proteins found in mulberry latex as defense proteins against insect herbivores, which modify the PM to a thick structure that inhibits digestive processes; Mir1-CP, a defense cysteine protease from maize that inhibits the growth of insects at very low concentrations and degrades the PM structures; and chitinases and lectins. The importance, necessary characteristics, and modes of action of PM-targeting proteins are then discussed from a strategic point of view, by spotlighting the importance of selective permeability of the PM. Finally, the review discusses the possibility of applying PM-targeting proteins for the control of pest insects.


Asunto(s)
Interacciones Huésped-Patógeno , Insectos/virología , Animales , Tracto Gastrointestinal , Control de Insectos , Proteínas de Plantas , Proteínas Virales
20.
J Exp Bot ; 59(12): 3383-93, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18653696

RESUMEN

Phytochrome regulates lettuce (Lactuca sativa L. cv. Grand Rapids) seed germination via the control of the endogenous level of bioactive gibberellin (GA). In addition to the previously identified LsGA20ox1, LsGA20ox2, LsGA3ox1, LsGA3ox2, LsGA2ox1, and LsGA2ox2, five cDNAs were isolated from lettuce seeds: LsCPS, LsKS, LsKO1, LsKO2, and LsKAO. Using an Escherichia coli expression system and functional assays, it is shown that LsCPS and LsKS encode ent-copalyl diphosphate synthase and ent-kaurene synthase, respectively. Using a Pichia pastoris system, it was found that LsKO1 and LsKO2 encode ent-kaurene oxidases and LsKAO encodes ent-kaurenoic acid oxidase. A comprehensive expression analysis of GA metabolism genes using the quantitative reverse transcription polymerase chain reaction suggested that transcripts of LsGA3ox1 and LsGA3ox2, both of which encode GA 3-oxidase for GA activation, were primarily expressed in the hypocotyl end of lettuce seeds, were expressed at much lower levels than the other genes tested, and were potently up-regulated by phytochrome. Furthermore, LsDELLA1 and LsDELLA2 cDNAs that encode DELLA proteins, which act as negative regulators in the GA signalling pathway, were isolated from lettuce seeds. The transcript levels of these two genes were little affected by light. Lettuce seeds in which de novo GA biosynthesis was suppressed responded almost identically to exogenously applied GA, irrespective of the light conditions, suggesting that GA responsiveness is not significantly affected by light in lettuce seeds. It is proposed that lettuce seed germination is regulated mainly via the control of the endogenous content of bioactive GA, rather than the control of GA responsiveness.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Germinación , Giberelinas/metabolismo , Lactuca/metabolismo , Semillas/metabolismo , Transducción de Señal , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Germinación/efectos de la radiación , Giberelinas/genética , Lactuca/enzimología , Lactuca/genética , Lactuca/efectos de la radiación , Luz , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/efectos de la radiación , Transducción de Señal/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA