Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Exp Bot ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727615

RESUMEN

Transgenerational plasticity in plants enables rapid adaptation to environmental changes, allowing organisms and their offspring to adapt to the environment without altering their underlying DNA. In this study, we investigated the plasticity of transgenerational salinity tolerance of rice plants using a reciprocal transplant experimental strategy. Our aim was to assess whether nongenetic environment-induced phenotypic modifications and transgenerational salinity affect the salinity tolerance of progeny while excluding nuclear genomic factors for two generations. Using salt-tolerant and salt-sensitive rice genotypes, we observed that the parentally salt-stressed salt-sensitive genotype displayed greater growth performance, photosynthetic activity, yield performance, and transcriptional responses than did the parentally nonstressed salt-sensitive plants under salt stress conditions. Surprisingly, salt stress-exposed salt-tolerant progeny did not exhibit as much salinity tolerance as salt stress-exposed salt-sensitive progeny under salt stress. Our findings indicate that the phenotypes of offspring plants differed based on the environment experienced by their ancestors, resulting in heritable transgenerational phenotypic modifications in salt-sensitive genotypes via maternal effects. These results elucidated the mechanisms underlying transgenerational plasticity in salinity tolerance, providing valuable insights into how plants respond to changing environmental conditions.

2.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397061

RESUMEN

High temperatures, drought, and salt stresses severely inhibit plant growth and production due to the effects of climate change. The Arabidopsis ARR1, ARR10, and ARR12 genes were identified as negative salt and drought stress regulators. However, in rice, the tolerance capacity of the hst1 gene, which is orthologous to the ARR1, ARR10, and ARR12 genes, to drought and multiple high temperature and drought stresses remains unknown. At the seedling and reproductive stages, we investigated the drought (DS) high temperature (HT) and multiple high temperature and drought stress (HT+DS) tolerance capacity of the YNU31-2-4 (YNU) genotype, which carries the hst1 gene, and its nearest genomic relative Sister Line (SL), which has a 99% identical genome without the hst1 gene. At the seedling stage, YNU demonstrated greater growth, photosynthesis, antioxidant enzyme activity, and decreased ROS accumulation under multiple HT+DS conditions. The YNU genotype also demonstrated improved yield potential and grain quality due to higher antioxidant enzyme activity and lower ROS generation throughout the reproductive stage under multiple HT+DS settings. Furthermore, for the first time, we discovered that the B-type response regulator hst1 gene controls ROS generation and antioxidant enzyme activities by regulating upstream and downstream genes to overcome yield reduction under multiple high temperatures and drought stress. This insight will help us to better understand the mechanisms of high temperature and drought stress tolerance in rice, as well as the evolution of tolerant crops that can survive increased salinity to provide food security during climate change.


Asunto(s)
Arabidopsis , Oryza , Sequías , Temperatura , Antioxidantes , Especies Reactivas de Oxígeno , Plantones , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396811

RESUMEN

C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.


Asunto(s)
Carbono/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Transporte Biológico , Susceptibilidad a Enfermedades , Metabolismo Energético , Ambiente , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Metabolómica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Estrés Fisiológico
4.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210132

RESUMEN

The long-chain acyl-CoA synthetases (LACSs) are involved in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. These enzymes catalyze the critical reaction of fatty acyl chains to fatty acyl-CoAs for the triacylglycerol biosynthesis used as carbon and energy reserves. In Arabidopsis, LACSs are encoded by a family of nine genes, with LACS9 being the only member located in the chloroplast envelope membrane. However, the comprehensive role of LACS9 and its contribution to plant metabolism have not been explored thoroughly. In this study, we report on the identification and characterization of LACS9 mutants in rice plants. Our results indicate that the loss-of-function mutations in OsLACS9 affect the architecture of internodes resulting in dwarf plants with large starch granules in the chloroplast, showing the suppression of starch degradation. Moreover, the plastid localization of α-amylase I-1 (AmyI-1)-a key enzyme involved in starch breakdown in plastids-was suppressed in the lacs9 mutant line. Immunological and confocal laser scanning microscopy analyses showed that OsLACS9-GFP is located in the chloroplast envelope in green tissue. Microscopic analysis showed that OsLACS9s interact with each other in the plastid envelope membrane. Furthermore, OsLACS9 is also one of the proteins transported to plastids without a transit peptide or involvement of the Toc/Tic complex system. To identify the plastid-targeting signal of OsLACS9, the transient expression and localization of a series of N-terminal truncated OsLACS9-green fluorescent protein (GFP) fusion proteins were examined. Truncation analyses identified the N-terminal 30 amino acid residues to be required for OsLACS9 plastid localization. Overall, the data in this study provide an advanced understanding of the function of OsLACS9 and its role in starch degradation and plant growth.


Asunto(s)
Cloroplastos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Membranas Intracelulares/metabolismo , Oryza/genética , Oryza/metabolismo , Mutación con Pérdida de Función , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Plastidios/genética , Plastidios/metabolismo , Almidón/química
5.
J Proteome Res ; 18(12): 4197-4205, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31646870

RESUMEN

The Human Proteome Project (HPP) has made great efforts to clarify the existing evidence of human proteins since 2012. However, according to the recent release of neXtProt (2019-1), approximately 10% of all human genes still have inadequate or no experimental evidence of their translation at the protein level. They were categorized as missing proteins (PE2-PE4). To further the goal of HPP, we developed a two-step bioinformatic strategy addressing the utilization of the SRMAtlas synthetic peptides corresponding to the missing proteins as an exclusive reference in order to explore their natural counterparts within GPM. In the first step, we searched the GPM for the non-nested SRMAtlas peptides corresponding to the missing proteins, taking under consideration only those detected via ≥2 non-nested unitypic/proteotypic peptides "Stranded peptides" with length ≥9 amino acids in the same proteomic study. As a result, 51 missing proteins were newly detected in 35 different proteomic studies. In the second step, we validated these newly detected missing proteins based on matching the spectra of their synthetic and natural peptides in SRMAtlas and GPM, respectively. The results showed that 23 of the missing proteins with ≥2 non-nested peptides were validated by careful spectral matching.


Asunto(s)
Bases de Datos de Proteínas , Proteoma , Proteómica/métodos , Humanos , Péptidos/síntesis química , Mapas de Interacción de Proteínas , Reproducibilidad de los Resultados , Programas Informáticos
6.
Plant Cell Environ ; 42(9): 2627-2644, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31222760

RESUMEN

Microorganisms produce volatile compounds (VCs) that promote plant growth and photosynthesis through complex mechanisms involving cytokinin (CK) and abscisic acid (ABA). We hypothesized that plants' responses to microbial VCs involve posttranslational modifications of the thiol redox proteome through action of plastidial NADPH-dependent thioredoxin reductase C (NTRC), which regulates chloroplast redox status via its functional relationship with 2-Cys peroxiredoxins. To test this hypothesis, we analysed developmental, metabolic, hormonal, genetic, and redox proteomic responses of wild-type (WT) plants and a NTRC knockout mutant (ntrc) to VCs emitted by the phytopathogen Alternaria alternata. Fungal VC-promoted growth, changes in root architecture, shifts in expression of VC-responsive CK- and ABA-regulated genes, and increases in photosynthetic capacity were substantially weaker in ntrc plants than in WT plants. As in WT plants, fungal VCs strongly promoted growth, chlorophyll accumulation, and photosynthesis in ntrc-Δ2cp plants with reduced 2-Cys peroxiredoxin expression. OxiTRAQ-based quantitative and site-specific redox proteomic analyses revealed that VCs promote global reduction of the thiol redox proteome (especially of photosynthesis-related proteins) of WT leaves but its oxidation in ntrc leaves. Our findings show that NTRC is an important mediator of plant responses to microbial VCs through mechanisms involving global thiol redox proteome changes that affect photosynthesis.


Asunto(s)
Alternaria , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Fotosíntesis/efectos de los fármacos , Proteoma
7.
Int J Mol Sci ; 20(10)2019 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-31130712

RESUMEN

Salinity critically limits rice metabolism, growth, and productivity worldwide. Improvement of the salt resistance of locally grown high-yielding cultivars is a slow process. The objective of this study was to develop a new salt-tolerant rice germplasm using speed-breeding. Here, we precisely introgressed the hst1 gene, transferring salinity tolerance from "Kaijin" into high-yielding "Yukinko-mai" (WT) rice through single nucleotide polymorphism (SNP) marker-assisted selection. Using a biotron speed-breeding technique, we developed a BC3F3 population, named "YNU31-2-4", in six generations and 17 months. High-resolution genotyping by whole-genome sequencing revealed that the BC3F2 genome had 93.5% similarity to the WT and fixed only 2.7% of donor parent alleles. Functional annotation of BC3F2 variants along with field assessment data indicated that "YNU31-2-4" plants carrying the hst1 gene had similar agronomic traits to the WT under normal growth condition. "YNU31-2-4" seedlings subjected to salt stress (125 mM NaCl) had a significantly higher survival rate and increased shoot and root biomasses than the WT. At the tissue level, quantitative and electron probe microanalyzer studies indicated that "YNU31-2-4" seedlings avoided Na+ accumulation in shoots under salt stress. The "YNU31-2-4" plants showed an improved phenotype with significantly higher net CO2 assimilation and lower yield decline than WT under salt stress at the reproductive stage. "YNU31-2-4" is a potential candidate for a new rice cultivar that is highly tolerant to salt stress at the seedling and reproductive stages, and which might maintain yields under a changing global climate.


Asunto(s)
Oryza/genética , Tolerancia a la Sal , Cruzamientos Genéticos , Genes de Plantas , Oryza/fisiología , Fitomejoramiento , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
8.
Int J Mol Sci ; 19(9)2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30205448

RESUMEN

Rice nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides including ADP-glucose and ATP. Under high temperature and elevated CO2 conditions (HT + ECO2), the npp1 knockout rice mutant displayed rapid growth and high starch content phenotypes, indicating that NPP1 exerts a negative effect on starch accumulation and growth. To gain further insight into the mechanisms involved in the NPP1 downregulation induced starch overaccumulation, in this study we conducted photosynthesis, leaf proteomic, and chloroplast phosphoproteomic analyses of wild-type (WT) and npp1 plants cultured under HT + ECO2. Photosynthesis in npp1 leaves was significantly higher than in WT. Additionally, npp1 leaves accumulated higher levels of sucrose than WT. The proteomic analyses revealed upregulation of proteins related to carbohydrate metabolism and the protein synthesis system in npp1 plants. Further, our data indicate the induction of 14-3-3 proteins in npp1 plants. Our finding demonstrates a higher level of protein phosphorylation in npp1 chloroplasts, which may play an important role in carbohydrate accumulation. Together, these results offer novel targets and provide additional insights into carbohydrate metabolism regulation under ambient and adverse conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Respuesta al Choque Térmico , Oryza/fisiología , Hidrolasas Diéster Fosfóricas/genética , Fotosíntesis , Pirofosfatasas/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Calentamiento Global , Mutación , Oryza/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Biosíntesis de Proteínas , Proteómica , Pirofosfatasas/metabolismo , Almidón/metabolismo
9.
J Proteome Res ; 16(12): 4403-4414, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28980472

RESUMEN

In an attempt to complete human proteome project (HPP), Chromosome-Centric Human Proteome Project (C-HPP) launched the journey of missing protein (MP) investigation in 2012. However, 2579 and 572 protein entries in the neXtProt (2017-1) are still considered as missing and uncertain proteins, respectively. Thus, in this study, we proposed a pipeline to analyze, identify, and validate human missing and uncertain proteins in open-access transcriptomics and proteomics databases. Analysis of RNA expression pattern for missing proteins in Human protein Atlas showed that 28% of them, such as Olfactory receptor 1I1 ( O60431 ), had no RNA expression, suggesting the necessity to consider uncommon tissues for transcriptomic and proteomic studies. Interestingly, 21% had elevated expression level in a particular tissue (tissue-enriched proteins), indicating the importance of targeting such proteins in their elevated tissues. Additionally, the analysis of RNA expression level for missing proteins showed that 95% had no or low expression level (0-10 transcripts per million), indicating that low abundance is one of the major obstacles facing the detection of missing proteins. Moreover, missing proteins are predicted to generate fewer predicted unique tryptic peptides than the identified proteins. Searching for these predicted unique tryptic peptides that correspond to missing and uncertain proteins in the experimental peptide list of open-access MS-based databases (PA, GPM) resulted in the detection of 402 missing and 19 uncertain proteins with at least two unique peptides (≥9 aa) at <(5 × 10-4)% FDR. Finally, matching the native spectra for the experimentally detected peptides with their SRMAtlas synthetic counterparts at three transition sources (QQQ, QTOF, QTRAP) gave us an opportunity to validate 41 missing proteins by ≥2 proteotypic peptides.


Asunto(s)
Minería de Datos/métodos , Bases de Datos de Proteínas , Proteoma/análisis , Biología Computacional , Humanos , Proteómica/métodos , Distribución Tisular , Transcriptoma
10.
Plant Cell Physiol ; 57(8): 1610-28, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27335351

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterases (NPPs) are widely distributed N-glycosylated enzymes that catalyze the hydrolytic breakdown of numerous nucleotides and nucleotide sugars. In many plant species, NPPs are encoded by a small multigene family, which in rice are referred to NPP1-NPP6 Although recent investigations showed that N-glycosylated NPP1 is transported from the endoplasmic reticulum (ER)-Golgi system to the chloroplast through the secretory pathway in rice cells, information on N-glycan composition and subcellular localization of other NPPs is still lacking. Computer-assisted analyses of the amino acid sequences deduced from different Oryza sativa NPP-encoding cDNAs predicted all NPPs to be secretory glycoproteins. Confocal fluorescence microscopy observation of cells expressing NPP2 and NPP6 fused with green fluorescent protein (GFP) revealed that NPP2 and NPP6 are plastidial proteins. Plastid targeting of NPP2-GFP and NPP6-GFP was prevented by brefeldin A and by the expression of ARF1(Q71L), a dominant negative mutant of ADP-ribosylation factor 1 that arrests the ER to Golgi traffic, indicating that NPP2 and NPP6 are transported from the ER-Golgi to the plastidial compartment. Confocal laser scanning microscopy and high-pressure frozen/freeze-substituted electron microscopy analyses of transgenic rice cells ectopically expressing the trans-Golgi marker sialyltransferase fused with GFP showed the occurrence of contact of Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids. Sensitive and high-throughput glycoblotting/mass spectrometric analyses showed that complex-type and paucimannosidic-type glycans with fucose and xylose residues occupy approximately 80% of total glycans of NPP1, NPP2 and NPP6. The overall data strongly indicate that the trans-Golgi compartments participate in the Golgi to plastid trafficking and targeting mechanism of NPPs.


Asunto(s)
Glicómica , Oryza/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Secuencia de Aminoácidos , Animales , Brefeldino A/farmacología , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Genes Reporteros , Glicosilación , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Familia de Multigenes , Oryza/genética , Oryza/ultraestructura , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Plastidios/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Pirofosfatasas/genética , Proteínas Recombinantes de Fusión , Alineación de Secuencia
11.
Plant Biotechnol J ; 13(9): 1251-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25586098

RESUMEN

Superoxide dismutase (SOD) is widely assumed to play a role in the detoxification of reactive oxygen species caused by environmental stresses. We found a characteristic expression of manganese SOD 1 (MSD1) in a heat-stress-tolerant cultivar of rice (Oryza sativa). The deduced amino acid sequence contains a signal sequence and an N-glycosylation site. Confocal imaging analysis of rice and onion cells transiently expressing MSD1-YFP showed MSD1-YFP in the Golgi apparatus and plastids, indicating that MSD1 is a unique Golgi/plastid-type SOD. To evaluate the involvement of MSD1 in heat-stress tolerance, we generated transgenic rice plants with either constitutive high expression or suppression of MSD1. The grain quality of rice with constitutive high expression of MSD1 grown at 33/28 °C, 12/12 h, was significantly better than that of the wild type. In contrast, MSD1-knock-down rice was markedly susceptible to heat stress. Quantitative shotgun proteomic analysis indicated that the overexpression of MSD1 up-regulated reactive oxygen scavenging, chaperone and quality control systems in rice grains under heat stress. We propose that the Golgi/plastid MSD1 plays an important role in adaptation to heat stress.


Asunto(s)
Aparato de Golgi/enzimología , Respuesta al Choque Térmico/fisiología , Oryza/fisiología , Plastidios/enzimología , Superóxido Dismutasa/fisiología , Secuencia de Aminoácidos , Técnicas de Silenciamiento del Gen , Microscopía Confocal , Datos de Secuencia Molecular , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Semillas/crecimiento & desarrollo , Superóxido Dismutasa/genética
12.
Plant Cell Physiol ; 55(7): 1233-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24850833

RESUMEN

In plants, environmental stresses cause an increase in the intracellular level of reactive oxygen species (ROS), leading to tissue injury. To obtain biochemical insights into this damage process, we investigated the protein carbonyls formed by ROS or by the lipid peroxide-derived α,ß-unsaturated aldehydes and ketones (i.e. reactive carbonyl species, or RCS) in the leaves of Arabidopsis thaliana under salt stress. A. thaliana Col-0 plants that we treated with 300 mM NaCl for 72 h under continuous illumination suffered irreversible leaf damage. Several RCS such as 4-hydroxy-(E)-2-nonenal (HNE) were increased within 12 h of this salt treatment. Immunoblotting using distinct antibodies against five different RCS, i.e. HNE, 4-hydroxy-(E)-2-hexenal, acrolein, crotonaldehyde and malondialdehyde, revealed that RCS-modified proteins accumulated in leaves with the progress of the salt stress treatment. The band pattern of Western blotting suggested that these different RCS targeted a common set of proteins. To identify the RCS targets, we collected HNE-modified proteins via an anti-HNE antiserum affinity trap and performed an isobaric tag for relative and absolute quantitation, as a quantitative proteomics approach. Seventeen types of protein, modified by 2-fold more in the stressed plants than in the non-stressed plants, were identified as sensitive RCS targets. With aldehyde-reactive probe-based affinity trapping, we collected the oxidized proteins and identified 22 additional types of protein as sensitive ROS targets. These RCS and ROS target proteins were distributed in the cytosol and apoplast, as well as in the ROS-generating organelles the peroxisome, chloroplast and mitochondrion, suggesting the participation of plasma membrane oxidation in the cellular injury. Possible mechanisms by which these modified targets cause cell death are discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteoma , Proteómica , Cloruro de Sodio/farmacología , Aldehídos/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/efectos de la radiación , Luz , Peroxidación de Lípido , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Carbonilación Proteica , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
13.
Plant Cell Physiol ; 55(2): 320-32, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24092883

RESUMEN

Nucleotide pyrophosphatase/phosphodiesterase (NPP) is a widely distributed enzymatic activity occurring in both plants and mammals that catalyzes the hydrolytic breakdown of the pyrophosphate and phosphodiester bonds of a number of nucleotides. Unlike mammalian NPPs, the physiological function of plant NPPs remains largely unknown. Using a complete rice NPP1-encoding cDNA as a probe, in this work we have screened a rice shoot cDNA library and obtained complete cDNAs corresponding to six NPP genes (NPP1-NPP6). As a first step to clarify the role of NPPs, recombinant NPP1, NPP2 and NPP6 were purified from transgenic rice cells constitutively expressing NPP1, NPP2 and NPP6, respectively, and their enzymatic properties were characterized. NPP1 and NPP6 exhibited hydrolytic activities toward ATP, UDP-glucose and the starch precursor molecule, ADP-glucose, whereas NPP2 did not recognize nucleotide sugars as substrates, but hydrolyzed UDP, ADP and adenosine 5'-phosphosulfate. To gain insight into the physiological function of rice NPP1, an npp1 knockout mutant was characterized. The ADP-glucose hydrolytic activities in shoots of npp1 rice seedlings were 8% of those of the wild type (WT), thus indicating that NPP1 is a major determinant of ADP-glucose hydrolytic activity in rice shoots. Importantly, when seedlings were cultured at 160 Pa CO2 under a 28°C/23°C (12 h light/12 h dark) regime, npp1 shoots and roots were larger than those of wild-type (WT) seedlings. Furthermore, the starch content in the npp1 shoots was higher than that of WT shoots. Growth and starch accumulation were also enhanced under an atmospheric CO2 concentration (40 Pa) when plants were cultured under a 33°C/28°C regime. The overall data strongly indicate that NPP1 exerts a negative effect on plant growth and starch accumulation in shoots, especially under high CO2 concentration and high temperature conditions.


Asunto(s)
Dióxido de Carbono/metabolismo , Oryza/enzimología , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Almidón/metabolismo , Adenosina Difosfato Glucosa/metabolismo , Secuencia de Bases , Dióxido de Carbono/farmacología , Células Cultivadas , ADN Complementario/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Oryza/fisiología , Hidrolasas Diéster Fosfóricas/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Pirofosfatasas/genética , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , Temperatura
14.
Biosci Biotechnol Biochem ; 78(6): 989-97, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25036124

RESUMEN

AmyI-1 is an α-amylase from Oryza sativa (rice) and plays a crucial role in degrading starch in various tissues and at various growth stages. This enzyme is a glycoprotein with an N-glycosylated carbohydrate chain, a unique characteristic among plant α-amylases. In this study, we report the first crystal structure of AmyI-1 at 2.2-Å resolution. The structure consists of a typical (ß/α)8-barrel, which is well-conserved among most α-amylases in the glycoside hydrolase family-13. Structural superimposition indicated small variations in the catalytic domain and carbohydrate-binding sites between AmyI-1 and barley α-amylases. By contrast, regions around the N-linked glycosylation sites displayed lower conservation of amino acid residues, including Asn-263, Asn-265, Thr-307, Asn-342, Pro-373, and Ala-374 in AmyI-1, which are not conserved in barley α-amylases, suggesting that these residues may contribute to the construction of the structure of glycosylated AmyI-1. These results increase the depths of our understanding of the biological functions of AmyI-1.


Asunto(s)
Oryza/enzimología , Temperatura , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Estabilidad de Enzimas , Glicosilación , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Plant Physiol Biochem ; 214: 108914, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38981207

RESUMEN

Salinity is a critical environmental stress factor that significantly reduces crop productivity and yield. A mutant B-type response regulator gene (hst1) has been shown to promote salinity tolerance in the YNU genotype. Previous studies on the hst1 gene showed a higher proline production capacity under salt stress. Using almost identical genetic backgrounded salt-tolerant (YNU) and salt-sensitive (Sister line) rice genotypes, we tested the function of proline in the hst1 gene salinity-tolerance mechanism by applying exogenous proline under control and salt-stress conditions. Morpho-physiological, biochemical, and molecular analysis of ST and SS plants was performed to clarify the salinity tolerance mechanism mediated by the exogenous proline. The ST and SS genotypes accumulated exogenous proline, and the ST genotype has higher proline levels than the SS genotype. However, exogenous proline improved salt tolerance only in the SS genotype. Exogenous proline promotes plant and root growth by stimulating photosynthetic pigments and photosynthesis. The exogenous proline has a reductive effect on MDA, and H2O2 protects plants against ROS. Interestingly, exogenous proline lowers Na+ and raises K+ accumulations under salt stress. In the SS genotype, exogenous proline increases the activity of antioxidant enzymes (SOD, CAT, and APX) to protect against salinity-induced damage. The exogenous proline application down-regulates proline-synthesis genes (OsP5CS1 and OsP5CR) and up-regulates proline-degradation genes. Also, exogenous proline increases the expression of the OsSalT and OsGRAS29 genes, improving salinity tolerance in the SS genotype. Our study has demonstrated that proline plays a significant role in conferring salt tolerance with the salinity-tolerance-related hst1 mechanisms.

16.
J Appl Glycosci (1999) ; 71(1): 23-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799415

RESUMEN

The objective of this study was to characterize the endosperm starch in rice that ectopically overexpressed the α-amylase. Transgenic rice plants, transformed with cauliflower mosaic virus 35S promoter driven AmyI-1 (35S::AmyI-1) and AmyII-4 (35S::AmyII-4), and 10 kDa prolamin promoter driven AmyI-1 (P10::AmyI-1), were cultivated under standard conditions (23 °C, 12 h in the dark/ 26 °C, 12 h in the light), and brown grains were subsequently harvested. Each grain displayed characteristic chalkiness, while electron microanalyzer (EPMA)-SEM images disclosed numerous small pits on the surface of the starch granules, attributable to α-amylase activity. Fluorescence labeling and capillary electrophoresis analysis of starch chain length distribution revealed no significant alterations in the starches of 35S::AmyI-1 and 35S::AmyII-4 transgenic rice compared to the wild-type. Conversely, the extremely short α-glucan chains (DP 2-8) exhibited a dramatic increase in the P10::AmyI-1 starch. Rapid visco-analyzer analysis also identified variations in the chain length distribution of P10::AmyI-1 starch, manifesting as changes in viscosity. Moreover, 1H-NMR analysis uncovered dynamic modifications in the molecular structure of starch in rice grain transformed with P10::AmyI-1, which was found to possess unprecedented structural characteristics.

17.
Plant J ; 71(4): 564-74, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22448681

RESUMEN

Genes that promote DNA methylation and demethylation in plants have been characterized mainly in Arabidopsis. Arabidopsis DNA demethylation is mediated by bi-functional DNA enzymes with glycosylase activity that removes 5-methylcytosine and lyase activity that nicks double-stranded DNA at an abasic site. Homologous recombination-promoted knock-in targeting of the ROS1a gene, the longest of six putative DNA demethylase genes in the rice genome, by fusing its endogenous promoter to the GUS reporter gene, led to reproducibly disrupted ROS1a in primary (T(0)) transgenic plants in the heterozygous condition. These T(0) plants exhibited no overt morphological phenotypes during the vegetative phase, and GUS staining showed ROS1a expression in pollen, unfertilized ovules and meristematic cells. Interestingly, neither the maternal nor paternal knock-in null allele, ros1a-GUS1, was virtually detected in the progeny; such an intransmittable null mutation is difficult to isolate by conventional mutagenesis techniques that are usually used to identify and isolate mutants in the progeny population. Even in the presence of the wild-type paternal ROS1a allele, the maternal ros1a-GUS1 allele caused failure of early-stage endosperm development, resulting in incomplete embryo development, with embryogenesis producing irregular but viable embryos that failed to complete seed dormancy, implying non-equivalent maternal and paternal contribution of ROS1a in endosperm development. The paternal ros1a-GUS1 allele was not transmitted to progeny, presumably because of a male gametophytic defect(s) prior to fertilization. Thus, ROS1a is indispensable in both male and female gametophytes, and DNA demethylation must plays important roles in both gametophytes.


Asunto(s)
Mutación , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Cruzamientos Genéticos , Metilación de ADN , Técnicas de Sustitución del Gen , Células Germinativas de las Plantas , Germinación , Glucuronidasa/genética , Recombinación Homóloga , Datos de Secuencia Molecular , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Polen/genética , Regiones Promotoras Genéticas , Semillas/genética
18.
Plant Physiol Biochem ; 196: 542-555, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36774910

RESUMEN

Salinity is a serious environmental problem that limits plant yield in almost half of the agricultural fields. The hitomebore salt tolerant 1(hst1) is a mutant B-type response regulator gene that was reported to improve salinity tolerance in the 'YNU31-2-4' (YNU) genotype. The sister line (SL) is salt-sensitive, and the nearest genomic relative of the YNU plant has the OsRR22 gene, which is the non-mutant form of the hst1 gene. Biochemical and comprehensive transcriptome analysis of SL and YNU plants was performed to clarify the salinity tolerance mechanism(s) mediated by the hst1 gene. The hst1 gene reduced Na+ ions, lipid peroxidation, and H2O2 content, and improve proline and antioxidant enzymes activities under salt stress. Various transporter and gene-specific transcriptional regulator genes up-regulated in presence of the hst1 gene under saline conditions, identifying that post-stress transcription factors (OsbHLH056, OsH43, OsGRAS29, and OsMADS1) contributed to improved salinity tolerance in YNU plants. Specifically, OsSalT, miR156, and OsLPT1.16 genes were up-regulated, while upstream (OsHKs and OsHPs) and downstream regulators of the OsRR22 gene were down-regulated in YNU plants under saline conditions. Notably, the transcription factors reprogramming, upstream and downstream genes, indicate that these pathways are transcriptionally regulated by the hst1 gene. The findings of the regulatory role of the hst1 gene on plant transcriptome provide a greater understanding of hst1-mediated salt tolerance in rice plants. This knowledge will contribute to understanding the salinity tolerance mechanisms in rice and the evolution of salt-tolerant crops with the ability to withstand higher salinity to ensure food security during climate change.


Asunto(s)
Oryza , Tolerancia a la Sal , Tolerancia a la Sal/genética , Oryza/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrógeno/metabolismo , Salinidad , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
19.
Plants (Basel) ; 12(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176968

RESUMEN

The yield-reduction effect of abiotic stressors such as salinity and heat stresses with the growing world population threatens food security. Although adverse effects of salinity and heat stress on plant growth and production parameters have been documented, in nature, abiotic stresses occur sequentially or simultaneously. In this study, the stress tolerance and yield capacity of Yukinkomai, YNU31-2-4, and YNU SL rice genotypes tested under control (26 °C, 0 mM NaCl), salinity (26 °C, 75 mM NaCl), heat (31 °C, 0 mM NaCl), and heat and salinity (31 °C, 75 mM NaCl) stress combinations at vegetative and reproductive stages with six different scenarios. The results show that salinity and the heat and salinity combination stresses highly reduce plant growth performance and yield capacity. Heat stress during reproduction does not affect the yield but reduces the grain quality. The YNU31-2-4 genotype performs better under heavy salt and heat and salinity stress then the Yukinkomai and YNU SL genotypes. YNU31-2-4 genotypes accumulate less Na+ and more K+ under salt and multiple stresses. In the YNU31-2-4 genotype, low Na+ ion accumulation increases photosynthetic activity and pigment deposition, boosting the yield. Stress lowers the glucose accumulation in dry seeds, but the YNU31-2-4 genotype has a higher glucose accumulation.

20.
Plant Biotechnol J ; 10(9): 1110-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22967050

RESUMEN

High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism-related genes. Here we report the involvement of a starch-hydrolyzing enzyme, α-amylase, in high temperature-triggered grain chalkiness. In developing seeds, high temperature induced the expression of α-amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α-amylase activity, while it decreased an α-amylase-repressing plant hormone, ABA, suggesting starch to be degraded by α-amylase in developing grains under elevated temperature. Furthermore, RNAi-mediated suppression of α-amylase genes in ripening seeds resulted in fewer chalky grains under high-temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α-amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.


Asunto(s)
Calor , Oryza/enzimología , Semillas/fisiología , alfa-Amilasas/metabolismo , Ácido Abscísico/metabolismo , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , alfa-Amilasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA