Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 144(2): 216-226, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38648571

RESUMEN

ABSTRACT: Triple-negative breast cancer (TNBC) is an aggressive tumor entity in which immune checkpoint (IC) molecules are primarily synthesized in the tumor environment. Here, we report that procoagulant platelets bear large amounts of such immunomodulatory factors and that the presence of these cellular blood components in TNBC relates to protumorigenic immune-cell activity and impaired survival. Mechanistically, tumor-released nucleic acids attract platelets to the aberrant tumor microvasculature, where they undergo procoagulant activation, thus delivering specific stimulatory and inhibitory IC molecules. This concomitantly promotes protumorigenic myeloid leukocyte responses and compromises antitumorigenic lymphocyte activity, ultimately supporting tumor growth. Interference with platelet-leukocyte interactions prevented immune cell misguidance and suppressed tumor progression, nearly as effective as systemic IC inhibition. Hence, our data uncover a self-sustaining mechanism of TNBC by using platelets to misdirect immune-cell responses. Targeting this irregular multicellular interplay may represent a novel immunotherapeutic strategy for TNBC without the adverse effects of systemic IC inhibition.


Asunto(s)
Plaquetas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Humanos , Plaquetas/inmunología , Plaquetas/patología , Plaquetas/metabolismo , Femenino , Ratones , Animales , Escape del Tumor , Línea Celular Tumoral , Evasión Inmune
2.
Haematologica ; 106(10): 2641-2653, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32703799

RESUMEN

The recruitment of neutrophils from the microvasculature to the site of injury or infection represents a key event in the inflammatory response. Vitronectin (VN) is a multifunctional macromolecule abundantly present in blood and extracellular matrix. The role of this glycoprotein in the extravasation process of circulating neutrophils remains elusive. Employing advanced in vivo/ex vivo imaging techniques in different mouse models as well as in vitro methods, we uncovered a previously unrecognized function of VN in the transition of dynamic to static intravascular interactions of neutrophils with microvascular endothelial cells. These distinct properties of VN require the heteromerization of this glycoprotein with plasminogen activator inhibitor-1 (PAI- 1) on the activated venular endothelium and subsequent interactions of this protein complex with the scavenger receptor low-density lipoprotein receptor-related protein-1 on intravascularly adhering neutrophils. This induces p38 mitogen-activated protein kinases-dependent intracellular signaling events which, in turn, regulates the proper clustering of the b2 integrin lymphocyte function associated antigen-1 on the surface of these immune cells. As a consequence of this molecular interplay, neutrophils become able to stabilize their adhesion to the microvascular endothelium and, subsequently, to extravasate to the perivascular tissue. Hence, endothelial-bound VN-PAI-1 heteromers stabilize intravascular adhesion of neutrophils by coordinating b2 integrin clustering on the surface of these immune cells, thereby effectively controlling neutrophil trafficking to inflamed tissue. Targeting this protein complex might be beneficial for the prevention and treatment of inflammatory pathologies.


Asunto(s)
Antígenos CD18 , Vitronectina , Animales , Adhesión Celular , Análisis por Conglomerados , Células Endoteliales , Ratones , Neutrófilos
3.
J Neurosci Res ; 98(7): 1433-1456, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170776

RESUMEN

Perivascular astrocyte processes (PAP) surround cerebral endothelial cells (ECs) and modulate the strengthening of tight junctions to influence blood-brain barrier (BBB) permeability. Morphologically altered astrocytes may affect barrier properties and trigger the onset of brain pathologies. However, astrocyte-dependent mediators of these events remain poorly studied. Here, we show a pharmacologically driven elevated expression and release of growth/differentiation factor 15 (GDF15) in rat primary astrocytes and cerebral PAP. GDF15 has been shown to possess trophic properties for motor neurons, prompting us to hypothesize similar effects on astrocytes. Indeed, its increased expression and release occurred simultaneously to morphological changes of astrocytes in vitro and PAP, suggesting modulatory effects of GDF15 on these cells, but also neighboring EC. Administration of recombinant GDF15 was sufficient to promote astrocyte remodeling and enhance barrier properties between ECs in vitro, whereas its pharmacogenetic abrogation prevented these effects. We validated our findings in male high anxiety-related behavior rats, an animal model of depressive-like behavior, with shrunk PAP associated with reduced expression of the junctional protein claudin-5, which were both restored by a pharmacologically induced increase in GDF15 expression. Thus, we identified GDF15 as an astrocyte-derived trigger of astrocyte process remodeling linked to enhanced tight junction strengthening at the BBB.


Asunto(s)
Astrocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Neuronas Motoras/metabolismo , Uniones Estrechas/metabolismo , Animales , Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/diagnóstico por imagen , Línea Celular Tumoral , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor 15 de Diferenciación de Crecimiento/farmacología , Masculino , Neuronas Motoras/efectos de los fármacos , Permeabilidad , Ratas , Ratas Wistar , Uniones Estrechas/efectos de los fármacos
4.
J Immunother Cancer ; 9(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34876407

RESUMEN

BACKGROUND: Beyond their fundamental role in homeostasis and host defense, neutrophilic granulocytes (neutrophils) are increasingly recognized to contribute to the pathogenesis of malignant tumors. Recently, aging of mature neutrophils in the systemic circulation has been identified to be critical for these immune cells to properly unfold their homeostatic and anti-infectious functional properties. The role of neutrophil aging in cancer remains largely obscure. METHODS: Employing advanced in vivo microscopy techniques in different animal models of cancer as well as utilizing pulse-labeling and cell transfer approaches, various ex vivo/in vitro assays, and human data, we sought to define the functional relevance of neutrophil aging in cancer. RESULTS: Here, we show that signals released during early tumor growth accelerate biological aging of circulating neutrophils, hence uncoupling biological from chronological aging of these immune cells. This facilitates the accumulation of highly reactive neutrophils in malignant lesions and endows them with potent protumorigenic functions, thus promoting tumor progression. Counteracting uncoupled biological aging of circulating neutrophils by blocking the chemokine receptor CXCR2 effectively suppressed tumor growth. CONCLUSIONS: Our data uncover a self-sustaining mechanism of malignant neoplasms in fostering protumorigenic phenotypic and functional changes in circulating neutrophils. Interference with this aberrant process might therefore provide a novel, already pharmacologically targetable strategy for cancer immunotherapy.


Asunto(s)
Envejecimiento , Carcinoma de Células Escamosas/patología , Inflamación/patología , Neovascularización Patológica , Neutrófilos/inmunología , Receptores de Interleucina-8B/metabolismo , Animales , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores de Formil Péptido/genética , Receptores de Formil Péptido/metabolismo , Receptores de Interleucina-8B/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA