Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858418

RESUMEN

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Asunto(s)
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleótidos , Adenosina Trifosfato/metabolismo , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Resistencia a la Insulina , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Nocicepción , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo
2.
New Phytol ; 242(6): 2620-2634, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600023

RESUMEN

Iron (Fe) needs to be delivered to different organs and tissues of above-ground parts for playing its multiple physiological functions once it is taken up by the roots. However, the mechanisms underlying Fe distribution are poorly understood. We functionally characterized OsOPT7, a member of oligo peptide transporter family in terms of expression patterns, localization, transport activity and phenotypic analysis of knockdown lines. OsOPT7 was highly expressed in the nodes, especially in the uppermost node I, and its expression was upregulated by Fe-deficiency. OsOPT7 transports ferrous iron into the cells coupled with proton. Immunostaining revealed that OsOPT7 is mainly localized in the xylem parenchyma cells of the enlarged vascular bundles in the nodes and vascular tissues in the leaves. Knockdown of OsOPT7 did not affect the Fe uptake, but altered Fe distribution; less Fe was distributed to the new leaf, upper nodes and developing panicle, but more Fe was distributed to the old leaves. Furthermore, knockdown of OsOPT7 also resulted in less Fe distribution to the leaf sheath, but more Fe to the leaf blade. Taken together, OsOPT7 is involved in the xylem unloading of Fe for both long-distance distribution to the developing organs and local distribution within the leaf in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Hierro , Oryza , Proteínas de Plantas , Xilema , Xilema/metabolismo , Oryza/genética , Oryza/metabolismo , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Hojas de la Planta/metabolismo
3.
Nature ; 541(7635): 92-95, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28002408

RESUMEN

Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year. However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged- and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.


Asunto(s)
Agricultura/métodos , Proteínas de Transporte de Membrana/deficiencia , Proteínas de Transporte de Membrana/metabolismo , Oryza/anatomía & histología , Oryza/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Animales , Transporte Biológico , Grano Comestible/metabolismo , Eutrofización , Fertilizantes , Técnicas de Inactivación de Genes , Germinación , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Especificidad de Órganos , Oryza/genética , Oryza/crecimiento & desarrollo , Ácido Fítico/metabolismo , Células Vegetales/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantones/crecimiento & desarrollo , Xilema/metabolismo
4.
Plant Cell Physiol ; 61(8): 1387-1398, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484878

RESUMEN

About 60-85% of total phosphorus (P) in cereal crops is finally allocated to seeds, where it is required for seed development, germination and early growth. However, little is known about the molecular mechanisms underlying P allocation to seeds. Here, we found that two members (OsPHO1;1 and OsPHO1;2) of the PHO1 gene family are involved in the distribution of P to seeds in rice. Both OsPHO1;1 and OsPHO1;2 were localized to the plasma membrane and showed influx transport activities for inorganic phosphate. At the reproductive stage, both OsPHO1;1 and OsPHO1;2 showed higher expression in node I, the uppermost node connecting to the panicle. OsPHO1;1 was mainly localized at the phloem region of diffuse vascular bundles (DVBs) of node I, while OsPHO1;2 was expressed in the xylem parenchyma cells of the enlarged vascular bundles (EVBs). In addition, they were also expressed in the ovular vascular trace, the outer layer of the inner integument (OsPHO1;1) and in the nucellar epidermis (OsPHO1;2) of caryopses. Knockout of OsPHO1;2, as well as OsPHO1;1 to a lesser extent, decreased the distribution of P to the seed, resulting in decreased seed size and delayed germination. Taken together, OsPHO1;2 expressed in node I is responsible for the unloading of P from the xylem of EVBs, while OsPHO1;1 is involved in reloading P into the phloem of DVBs for subsequent allocation of P to seeds. Furthermore, OsPHO1;1 and OsPHO1;2 expression in the caryopsis is important for delivering P from the maternal tissues to the filial tissues for seed development.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Grano Comestible/metabolismo , Germinación , Especificidad de Órganos , Oryza/metabolismo , Proteínas de Transporte de Fosfato/fisiología , Proteínas de Plantas/fisiología
5.
Proc Natl Acad Sci U S A ; 114(31): E6297-E6305, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28720702

RESUMEN

Despite the high incidence of neuropathic and inflammatory pain worldwide, effective drugs with few side effects are currently unavailable for the treatment of chronic pain. Recently, researchers have proposed that inhibitors of purinergic chemical transmission, which plays a key role in the pathological pain response, may allow for targeted treatment of pathological neuropathic and inflammatory pain. However, such therapeutic analgesic agents have yet to be developed. In the present study, we demonstrated that clodronate, a first-generation bisphosphonate with comparatively fewer side effects than traditional treatments, significantly attenuates neuropathic and inflammatory pain unrelated to bone abnormalities via inhibition of vesicular nucleotide transporter (VNUT), a key molecule for the initiation of purinergic chemical transmission. In vitro analyses indicated that clodronate inhibits VNUT at a half-maximal inhibitory concentration of 15.6 nM without affecting other vesicular neurotransmitter transporters, acting as an allosteric modulator through competition with Cl- A low concentration of clodronate impaired vesicular ATP release from neurons, microglia, and immune cells. In vivo analyses revealed that clodronate is more effective than other therapeutic agents in attenuating neuropathic and inflammatory pain, as well as the accompanying inflammation, in wild-type but not VNUT -/- mice, without affecting basal nociception. These findings indicate that clodronate may represent a unique treatment strategy for chronic neuropathic and inflammatory pain via inhibition of vesicular ATP release.

6.
J Biol Chem ; 293(10): 3770-3779, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29363573

RESUMEN

Neutrophils migrate to sites infected by pathogenic microorganisms. This migration is regulated by neutrophil-secreted ATP, which stimulates neutrophils in an autocrine manner through purinergic receptors on the plasma membrane. Although previous studies have shown that ATP is released through channels at the plasma membrane of the neutrophil, it remains unknown whether it is also released through alternate secretory systems involving vesicular mechanisms. In this study, we investigated the possible involvement of vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and nucleotide release, in ATP secretion from neutrophils. RT-PCR and Western blotting analysis indicated that VNUT is expressed in mouse neutrophils. Immunohistochemical analysis indicated that VNUT mainly colocalized with matrix metalloproteinase-9 (MMP-9), a marker of tertiary granules, which are secretory organelles. In mouse neutrophils, ATP release was inhibited by clodronate, which is a potent VNUT inhibitor. Furthermore, neutrophils from VNUT-/- mice did not release ATP and exhibited significantly reduced migration in vitro and in vivo These findings suggest that tertiary granule-localized VNUT is responsible for vesicular ATP release and subsequent neutrophil migration. Thus, these findings suggest an additional mechanism through which ATP is released by neutrophils.


Asunto(s)
Adenosina Trifosfato/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Vesículas Secretoras/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Movimiento Celular/efectos de los fármacos , Adyuvante de Freund/farmacología , Regulación de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Moduladores del Transporte de Membrana/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila/efectos de los fármacos , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Transporte de Proteínas/efectos de los fármacos , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/inmunología
7.
Annu Rev Pharmacol Toxicol ; 56: 385-402, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26514205

RESUMEN

Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.


Asunto(s)
Transporte Biológico/fisiología , Interacciones Farmacológicas/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Animales , Humanos
8.
J Proteome Res ; 17(3): 1108-1119, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29350038

RESUMEN

Structural analysis of purified active membrane proteins can be performed by mass spectrometry (MS). However, no large-scale expression systems for active eukaryotic membrane proteins are available. Moreover, because membrane proteins cannot easily be digested by trypsin and ionized, they are difficult to analyze by MS. We developed a method for mass spectral analysis of eukaryotic membrane proteins combined with an overexpression system in Escherichia coli. Vesicular glutamate transporter 2 (VGLUT2/SLC17A6) with a soluble α-helical protein and histidine tag on the N- and C-terminus, respectively, was overexpressed in E. coli, solubilized with detergent, and purified by Ni-NTA affinity chromatography. Proteoliposomes containing VGLUT2 retained glutamate transport activity. For MS analysis, the detergent was removed from purified VGLUT2 by trichloroacetic acid precipitation, and VGLUT2 was then subjected to reductive alkylation and tryptic digestion. The resulting peptides were detected with 88% coverage by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS with or without liquid chromatography. Vesicular excitatory amino acid transporter and vesicular acetylcholine transporter were also detected with similar coverage by the same method. Thus this methodology could be used to analyze purified eukaryotic active transporters. Structural analysis with chemical modifiers by MS could have applications in functional binding analysis for drug discovery.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/análisis , Fragmentos de Péptidos/análisis , Proteínas de Transporte Vesicular de Acetilcolina/análisis , Proteína 2 de Transporte Vesicular de Glutamato/análisis , Animales , Precipitación Química , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Ratones , Mapeo Peptídico , Proteolisis , Ratas , Proteínas Recombinantes/análisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Ácido Tricloroacético/química , Tripsina/química , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
9.
J Biol Chem ; 292(9): 3909-3918, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082679

RESUMEN

Mast cells are secretory cells that play an important role in host defense by discharging various intragranular contents, such as histamine and serotonin, upon stimulation of Fc receptors. The granules also contain spermine and spermidine, which can act as modulators of mast cell function, although the mechanism underlying vesicular storage remains unknown. Vesicular polyamine transporter (VPAT), the fourth member of the SLC18 transporter family, is an active transporter responsible for vesicular storage of spermine and spermidine in neurons. In the present study, we investigated whether VPAT functions in mast cells. RT-PCR and Western blotting indicated VPAT expression in murine bone marrow-derived mast cells (BMMCs). Immunohistochemical analysis indicated that VPAT is colocalized with VAMP3 but not with histamine, serotonin, cathepsin D, VAMP2, or VAMP7. Membrane vesicles from BMMCs accumulated spermidine upon the addition of ATP in a reserpine- and bafilomycin A1-sensitive manner. BMMCs secreted spermine and spermidine upon the addition of either antigen or A23187 in the presence of Ca2+, and the antigen-mediated release, which was shown to be temperature-dependent and sensitive to bafilomycin A1 and tetanus toxin, was significantly suppressed by VPAT gene RNA interference. Under these conditions, expression of vesicular monoamine transporter 2 was unaffected, but antigen-dependent histamine release was significantly suppressed, which was recovered by the addition of 1 mm spermine. These results strongly suggest that VPAT is expressed and is responsible for vesicular storage of spermine and spermidine in novel secretory granules that differ from histamine- and serotonin-containing granules and is involved in vesicular release of these polyamines from mast cells.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Mastocitos/metabolismo , Poliaminas/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Animales , Calcimicina/química , Calcio/química , Catepsina D/química , Exocitosis , Histamina/química , Liberación de Histamina , Inmunohistoquímica , Masculino , Mastocitos/citología , Ratones , Microscopía Fluorescente , Proteínas R-SNARE/metabolismo , Ratas , Ratas Wistar , Vesículas Secretoras/metabolismo , Serotonina/química , Espermidina/metabolismo , Espermina/metabolismo , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteína 3 de Membrana Asociada a Vesículas/metabolismo
11.
Proc Natl Acad Sci U S A ; 112(11): 3356-61, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733858

RESUMEN

Extrusion of chloroquine (CQ) from digestive vacuoles through the Plasmodium falciparum CQ resistance transporter (PfCRT) is essential to establish CQ resistance of the malaria parasite. However, the physiological relevance of PfCRT and how CQ-resistant PfCRT gains the ability to transport CQ remain unknown. We prepared proteoliposomes containing purified CQ-sensitive and CQ-resistant PfCRTs and measured their transport activities. All PfCRTs tested actively took up tetraethylammonium, verapamil, CQ, basic amino acids, polypeptides, and polyamines at the expense of an electrochemical proton gradient. CQ-resistant PfCRT exhibited decreased affinity for CQ, resulting in increased CQ uptake. Furthermore, CQ competitively inhibited amino acid transport. Thus, PfCRT is a H(+)-coupled polyspecific nutrient and drug exporter.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Protones , Proteínas Protozoarias/metabolismo , Aminoácidos/metabolismo , Transporte Biológico/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Tetraetilamonio/metabolismo , Verapamilo/farmacología
12.
Am J Physiol Cell Physiol ; 309(2): C71-80, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25972451

RESUMEN

Membrane potential (Δψ)-driven and Cl(-)-dependent organic anion transport is a primary function of the solute carrier family 17 (SLC17) transporter family. Although the transport substrates and physiological relevance of the major members are well understood, SLC17A2 protein known to be Na(+)-phosphate cotransporter 3 (NPT3) is far less well characterized. In the present study, we investigated the transport properties and expression patterns of mouse SLC17A2 protein (mNPT3). Proteoliposomes containing the purified mNPT3 protein took up radiolabeled p-aminohippuric acid (PAH) in a Δψ- and Cl(-)-dependent manner. The mNPT3-mediated PAH uptake was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDs) and Evans blue, common inhibitors of SLC17 family members. The PAH uptake was also inhibited by various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs (NSAIDs) and urate. Consistent with these observations, the proteoliposome took up radiolabeled urate in a Δψ- and Cl(-)-dependent manner. Immunohistochemistry with specific antibodies against mNPT3 combined with RT-PCR revealed that mNPT3 is present in various tissues, including the hepatic bile duct, luminal membranes of the renal urinary tubules, maternal side of syncytiotrophoblast in the placenta, apical membrane of follicle cells in the thyroid, bronchiole epithelial cells in the lungs, and astrocytes around blood vessels in the cerebrum. These results suggested that mNPT3 is a polyspecific organic anion transporter that is involved in circulation of urate throughout the body.


Asunto(s)
Membrana Celular/metabolismo , Cloruros/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Ácido Úrico/metabolismo , Animales , Transporte Biológico , Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica , Hipuratos/metabolismo , Cinética , Potenciales de la Membrana , Ratones Endogámicos C57BL , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/antagonistas & inhibidores , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/genética
13.
Biol Pharm Bull ; 36(11): 1688-91, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24189413

RESUMEN

Vesicular nucleotide transporter (VNUT) is responsible for vesicular ATP storage in ATP-secreting cells. In the present study, we examined the effects on VNUT-mediated transport of ATP release inhibitors such as ATP-binding cassette (ABC) proteins, hemichannels, maxi anion channels and P2X7 receptor. The ATP transport activity of proteoliposomes containing purified human VNUT was blocked by glibenclamide, carbenoxolone, 18 α-glycyrrhetinic acid, flufenamic acid, arachidonic acid and A438079 without the formation of Δψ (positive inside) as a driving force being affected. Thus, inhibitors of ATP release may inhibit VNUT and subsequent ATP release, since the previous works proved that inhibitors of ATP release blocked VNUT-mediated ATP release at the cell level.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Ácido Araquidónico/farmacología , Carbenoxolona/farmacología , Clonación Molecular , ADN Complementario/genética , Escherichia coli/genética , Ácido Flufenámico/farmacología , Gliburida/farmacología , Ácido Glicirretínico/farmacología , Humanos , Liposomas , Datos de Secuencia Molecular , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Reacción en Cadena de la Polimerasa , Piridinas/farmacología , Tetrazoles/farmacología
14.
Proc Natl Acad Sci U S A ; 107(5): 2361-6, 2010 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-20133881

RESUMEN

Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses, seed maturation, germination, and senescence. ABA is predominantly produced in vascular tissues and exerts hormonal responses in various cells, including guard cells. Although ABA responses require extrusion of ABA from ABA-producing cells in an intercellular ABA signaling pathway, the transport mechanisms of ABA through the plasma membrane remain unknown. Here we isolated an ATP-binding cassette (ABC) transporter gene, AtABCG25, from Arabidopsis by genetically screening for ABA sensitivity. AtABCG25 was expressed mainly in vascular tissues. The fluorescent protein-fused AtABCG25 was localized at the plasma membrane in plant cells. In membrane vesicles derived from AtABCG25-expressing insect cells, AtABCG25 exhibited ATP-dependent ABA transport. The AtABCG25-overexpressing plants showed higher leaf temperatures, implying an influence on stomatal regulation. These results strongly suggest that AtABCG25 is an exporter of ABA and is involved in the intercellular ABA signaling pathway. The presence of the ABA transport mechanism sheds light on the active control of multicellular ABA responses to environmental stresses among plant cells.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Línea Celular , Membrana Celular/metabolismo , Cartilla de ADN/genética , Expresión Génica , Genes de Plantas , Mutación , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Spodoptera , Distribución Tisular , Transfección
15.
Nat Commun ; 14(1): 6522, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857615

RESUMEN

Silicon (Si) is the most abundant mineral element in the earth's crust. Some plants actively accumulate Si as amorphous silica (phytoliths), which can protect plants from stresses. Here, we report a gene (SIET4) that is required for the proper accumulation and cell-specific deposition of Si in rice and show that it is essential for normal growth. SIET4 is constitutively expressed in leaves and encodes a Si transporter. SlET4 polarly localizes at the distal side of epidermal cells and cells surrounding the bulliform cells (motor cells) of the leaf blade, where Si is deposited. Knockout of SIET4 leads to the death of rice in the presence but not absence of Si. Further analysis shows that SIET4 knockout induces abnormal Si deposition in mesophyll cells and the induction of hundreds of genes related to various stress responses. These results indicate that SIET4 is required for the proper export of Si from leaf cells to the leaf surface and for the healthy growth of rice on land.


Asunto(s)
Oryza , Silicio , Silicio/metabolismo , Oryza/metabolismo , Proteínas de Transporte de Membrana/genética , Dióxido de Silicio , Plantas/metabolismo
16.
Science ; 382(6677): eadf7429, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38127757

RESUMEN

During Drosophila aversive olfactory conditioning, aversive shock information needs to be transmitted to the mushroom bodies (MBs) to associate with odor information. We report that aversive information is transmitted by ensheathing glia (EG) that surround the MBs. Shock induces vesicular exocytosis of glutamate from EG. Blocking exocytosis impairs aversive learning, whereas activation of EG can replace aversive stimuli during conditioning. Glutamate released from EG binds to N-methyl-d-aspartate receptors in the MBs, but because of Mg2+ block, Ca2+ influx occurs only when flies are simultaneously exposed to an odor. Vesicular exocytosis from EG also induces shock-associated dopamine release, which plays a role in preventing formation of inappropriate associations. These results demonstrate that vesicular glutamate released from EG transmits negative valence information required for associative learning.


Asunto(s)
Reacción de Prevención , Condicionamiento Psicológico , Drosophila melanogaster , Neuroglía , Olfato , Animales , Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Drosophila melanogaster/fisiología , Glutamatos , Cuerpos Pedunculados/fisiología , Neuroglía/fisiología , Odorantes , Olfato/fisiología
17.
Am J Physiol Cell Physiol ; 302(11): C1652-60, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22460716

RESUMEN

The SLC17 anion transporter family comprises nine members that transport various organic anions in membrane potential (Δψ)- and Cl(-)-dependent manners. Although the transport substrates and physiological relevance of the majority of the members have already been determined, little is known about SLC17A4 proteins known to be Na(+)-phosphate cotransporter homologue (NPT homologue). In the present study, we investigated the expression and transport properties of human SLC17A4 protein. Using specific antibodies, we found that a human NPT homologue is specifically expressed and present in the intestinal brush border membrane. Proteoliposomes containing the purified protein took up radiolabeled p-aminohippuric acid (PAH) in a Cl(-)-dependent manner at the expense of an electrochemical gradient of protons, especially Δψ, across the membrane. The Δψ- and Cl(-)-dependent PAH uptake was inhibited by diisothiocyanostilbene-2,2'-disulfonic acid and Evans blue, common inhibitors of SLC17 family members. cis-Inhibition studies revealed that various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs, pravastatin, and urate inhibited the PAH uptake. Proteoliposomes took up radiolabeled urate, with the uptake having properties similar to those of PAH uptake. These results strongly suggested that the human NPT homologue acts as a polyspecific organic anion exporter in the intestines. Since SLC17A1 protein (NPT1) and SLC17A3 protein (NPT4) are responsible for renal urate extrusion, our results reveal the possible involvement of a NPT homologue in urate extrusion from the intestinal duct.


Asunto(s)
Intestino Delgado/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Animales , Transporte Biológico , Humanos , Intestino Delgado/fisiología , Masculino , Potenciales de la Membrana , Ratones , Pravastatina/farmacología , Proteolípidos/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/inmunología , Ácido Úrico/metabolismo , Ácido Úrico/farmacología , Ácido p-Aminohipúrico/metabolismo
18.
J Biol Chem ; 286(50): 42881-7, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22052906

RESUMEN

The vesicular nucleotide transporter (VNUT) is a secretory vesicle protein that is responsible for the vesicular storage and subsequent exocytosis of ATP (Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., and Moriyama, Y. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 5683-5686). Because VNUT actively transports ATP in a membrane potential (Δψ)-dependent manner irrespective of divalent cations such as Mg(2+) and Ca(2+), VNUT recognizes free ATP as a transport substrate. However, whether or not VNUT transports chelating complexes with divalent cations remains unknown. Here, we show that proteoliposomes containing purified VNUT actively took up Mg(2+) when ATP was present, as detected by atomic absorption spectroscopy. The VNUT-containing proteoliposomes also took up radioactive Ca(2+) upon imposing Δψ (positive-inside) but not ΔpH. The Δψ-driven Ca(2+) uptake required ATP and a millimolar concentration of Cl(-), which was inhibited by Evans blue, a specific inhibitor of SLC17-type transporters. VNUT in which Arg-119 was specifically mutated to alanine, the counterpart of the essential amino acid residue of the SLC17 family, lost the ability to take up both ATP and Ca(2+). Ca(2+) uptake was also inhibited in the presence of various divalent cations such as Mg(2+). Kinetic analysis indicated that Ca(2+) or Mg(2+) did not affect the apparent affinity for ATP. RNAi of the VNUT gene in PC12 cells decreased the vesicular Mg(2+) concentration to 67.7%. These results indicate that VNUT transports both nucleotides and divalent cations probably as chelating complexes and suggest that VNUT functions as a divalent cation importer in secretory vesicles under physiological conditions.


Asunto(s)
Cationes Bivalentes/metabolismo , Nucleótidos/metabolismo , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico , Calcio/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Humanos , Cinética , Magnesio/metabolismo , Ratones , Células PC12 , Ratas , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo , Proteínas Transportadoras Vesiculares de Neurotransmisores/genética
19.
Biochemistry ; 50(25): 5558-65, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21612282

RESUMEN

Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release of glutamate and the function of higher-order neurons. The vesicular content of glutamate is well correlated with membrane potential (Δψ), which suggests that Δψ determines the vesicular glutamate concentration. The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher-order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.


Asunto(s)
Metabolismo Energético , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Proteínas Transportadoras Vesiculares de Neurotransmisores/química , Proteínas Transportadoras Vesiculares de Neurotransmisores/metabolismo , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Transporte de Proteínas , Transducción de Señal , Proteínas de Transporte Vesicular de Glutamato/química , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas de Transporte Vesicular de Glutamato/fisiología , Proteínas Transportadoras Vesiculares de Neurotransmisores/fisiología
20.
J Biol Chem ; 285(34): 26107-13, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20566650

RESUMEN

SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na(+)/P(i) in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Deltapsi)-dependent manner. We found that NPT1 also transported urate. The uptake characteristics were similar to that of SLC17 members in its Cl(-) dependence and inhibitor sensitivity. When arginine 138, an essential amino acid residue for members of the SLC17 family such as the vesicular glutamate transporter, was specifically mutated to alanine, the resulting mutant protein was inactive in Deltapsi-dependent anion transport. Heterologously expressed and purified human NPT1 carrying the single nucleotide polymorphism mutation that is associated with increased risk of gout in humans exhibited 32% lower urate transport activity compared with the wild type protein. These results strongly suggested that NPT1 is a Cl(-)-dependent polyspecific anion exporter involved in urate excretion under physiological conditions.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/fisiología , Ácido Úrico/metabolismo , Sustitución de Aminoácidos , Animales , Transporte Biológico , Cloruros , Electrofisiología , Gota/genética , Humanos , Liposomas , Potenciales de la Membrana , Ratones , Modelos Biológicos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo I/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA