Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Trauma Acute Care Surg ; 92(3): 489-498, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882596

RESUMEN

BACKGROUND: Hemorrhagic shock and trauma (HS/T)-induced gut injury may play a critical role in the development of multi-organ failure. Novel therapies that target gut injury and vascular permeability early after HS/T could have substantial impacts on trauma patients. In this study, we investigate the therapeutic potential of human mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC EVs) in vivo in HS/T in mice and in vitro in Caco-2 human intestinal epithelial cells. METHODS: In vivo, using a mouse model of HS/T, vascular permeability to a 10-kDa dextran dye and histopathologic injury in the small intestine and lungs were measured among mice. Groups were (1) sham, (2) HS/T + lactated Ringer's (LR), (3) HS/T + MSCs, and (4) HS/T + MSC EVs. In vitro, Caco-2 cell monolayer integrity was evaluated by an epithelial cell impedance assay. Caco-2 cells were pretreated with control media, MSC conditioned media (CM), or MSC EVs, then challenged with hydrogen peroxide (H2O2). RESULTS: In vivo, both MSCs and MSC EVs significantly reduced vascular permeability in the small intestine (fluorescence units: sham, 456 ± 88; LR, 1067 ± 295; MSC, 765 ± 258; MSC EV, 715 ± 200) and lung (sham, 297 ± 155; LR, 791 ± 331; MSC, 331 ± 172; MSC EV, 303 ± 88). Histopathologic injury in the small intestine and lung was also attenuated by MSCs and MSC EVs. In vitro, MSC CM but not MSC EVs attenuated the increased permeability among Caco-2 cell monolayers challenged with H2O2. CONCLUSION: Mesenchymal stem cell EVs recapitulate the effects of MSCs in reducing vascular permeability and injury in the small intestine and lungs in vivo, suggesting MSC EVs may be a potential cell-free therapy targeting multi-organ dysfunction in HS/T. This is the first study to demonstrate that MSC EVs improve both gut and lung injury in an animal model of HS/T.


Asunto(s)
Permeabilidad Capilar , Vesículas Extracelulares/fisiología , Intestino Delgado/lesiones , Células Madre Mesenquimatosas/citología , Choque Hemorrágico/terapia , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Humanos , Peróxido de Hidrógeno , Lesión Pulmonar/terapia , Ratones
2.
Blood Adv ; 6(3): 959-969, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34861695

RESUMEN

Acute traumatic coagulopathy (ATC) occurs in approximately 30% of patients with trauma and is associated with increased mortality. Excessive generation of activated protein C (APC) and hyperfibrinolysis are believed to be driving forces for ATC. Two mouse models were used to investigate whether an engineered activated FV variant (superFVa) that is resistant to inactivation by APC and contains a stabilizing A2-A3 domain disulfide bond can reduce traumatic bleeding and normalize hemostasis parameters in ATC. First, ATC was induced by the combination of trauma and shock. ATC was characterized by activated partial thromboplastin time (APTT) prolongation and reductions of factor V (FV), factor VIII (FVIII), and fibrinogen but not factor II and factor X. Administration of superFVa normalized the APTT, returned FV and FVIII clotting activity levels to their normal range, and reduced APC and thrombin-antithrombin (TAT) levels, indicating improved hemostasis. Next, a liver laceration model was used where ATC develops as a consequence of severe bleeding. superFVa prophylaxis before liver laceration reduced bleeding and prevented APTT prolongation, depletion of FV and FVIII, and excessive generation of APC. Thus, prophylactic administration of superFVa prevented the development of ATC. superFVa intervention started after the development of ATC stabilized bleeding, reversed prolonged APTT, returned FV and FVIII levels to their normal range, and reduced TAT levels that were increased by ATC. In summary, superFVa prevented ATC and traumatic bleeding when administered prophylactically, and superFVa stabilized bleeding and reversed abnormal hemostasis parameters when administered while ATC was in progress. Thus, superFVa may be an attractive strategy to intercept ATC and mitigate traumatic bleeding.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Laceraciones , Animales , Trastornos de la Coagulación Sanguínea/etiología , Trastornos de la Coagulación Sanguínea/prevención & control , Factor V/genética , Factor V/metabolismo , Factor V/uso terapéutico , Factor Va/metabolismo , Hemorragia/etiología , Hemorragia/prevención & control , Hemostasis , Humanos , Ratones
3.
J Trauma Acute Care Surg ; 90(6): 1022-1031, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33797484

RESUMEN

BACKGROUND: Plasma has been shown to mitigate the endotheliopathy of trauma. Protection of the endothelium may be due in part to fibrinogen and other plasma-derived proteins found in cryoprecipitate; however, the exact mechanisms remain unknown. Clinical trials are underway investigating early cryoprecipitate administration in trauma. In this study, we hypothesize that cryoprecipitate will inhibit endothelial cell (EC) permeability in vitro and will replicate the ability of plasma to attenuate pulmonary vascular permeability and inflammation induced by hemorrhagic shock and trauma (HS/T) in mice. METHODS: In vitro, barrier permeability of ECs subjected to thrombin challenge was measured by transendothelial electrical resistance. In vivo, using an established mouse model of HS/T, we compared pulmonary vascular permeability among mice resuscitated with (1) lactated Ringer's solution (LR), (2) fresh frozen plasma (FFP), or (3) cryoprecipitate. Lung tissue from the mice in all groups was analyzed for markers of vascular integrity, inflammation, and inflammatory gene expression via NanoString messenger RNA quantification. RESULTS: Cryoprecipitate attenuates EC permeability and EC junctional compromise induced by thrombin in vitro in a dose-dependent fashion. In vivo, resuscitation of HS/T mice with either FFP or cryoprecipitate attenuates pulmonary vascular permeability (sham, 297 ± 155; LR, 848 ± 331; FFP, 379 ± 275; cryoprecipitate, 405 ± 207; p < 0.01, sham vs. LR; p < 0.01, LR vs. FFP; and p < 0.05, LR vs. cryoprecipitate). Lungs from cryoprecipitate- and FFP-treated mice demonstrate decreased lung injury, decreased infiltration of neutrophils and activation of macrophages, and preserved pericyte-endothelial interaction compared with LR-treated mice. Gene analysis of lung tissue from cryoprecipitate- and FFP-treated mice demonstrates decreased inflammatory gene expression, in particular, IL-1ß and NLRP3, compared with LR-treated mice. CONCLUSION: Our data suggest that cryoprecipitate attenuates the endotheliopathy of trauma in HS/T similar to FFP. Further investigation is warranted on active components and their mechanisms of action.


Asunto(s)
Endotelio Vascular/patología , Lesión Pulmonar/terapia , Plasma , Choque Hemorrágico/terapia , Heridas y Lesiones/terapia , Animales , Permeabilidad Capilar , Modelos Animales de Enfermedad , Endotelio Vascular/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/citología , Pulmón/patología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Masculino , Ratones , Lactato de Ringer/administración & dosificación , Choque Hemorrágico/etiología , Choque Hemorrágico/patología , Heridas y Lesiones/complicaciones
4.
J Trauma Acute Care Surg ; 90(2): 203-214, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060537

RESUMEN

BACKGROUND: Hemorrhagic shock (HS) and trauma induce endothelial barrier compromise, inflammation, and aberrant clotting. We have shown that fresh human platelets (Plts) and Plt extracellular vesicles mitigate vascular leak in murine models of injury. Here, we investigate the potential of freeze-dried platelets (FDPlts) to attenuate pulmonary vascular permeability, decrease inflammation, and promote clotting in a murine model of HS. METHODS: Human FDPlts were characterized using in vitro assays of Plt marker expression, aggregation, coagulation, and endothelial cell permeability. An intravital model of vascular injury in the mouse cremaster muscle was used to assess the ability of FDPlts to incorporate into clots. Mouse groups subjected to controlled hemorrhage for 90 minutes were (1) lactated Ringer solution (LR), (2) FDPlts, (3) fresh human Plts, (4) murine whole blood (WB), and (5) shams (only instrumented). Hemorrhagic shock mouse endpoints included coagulation, pulmonary vascular permeability, and lung injury. RESULTS: Freeze-dried Plts expressed Plt-specific markers and retained functionality similar to fresh Plts. In in vitro assays of Plt aggregation, differences were noted. In vivo, FDPlts and Plts were found to incorporate into clots in postcapillary venules in the mouse cremaster muscle. Hemorrhagic shock mice resuscitated with LR displayed increased pulmonary vascular permeability compared with sham (sham, 686.6 ± 359.7; shock-LR, 2,637 ± 954.7; p = 0.001), and treatment with FDPlts or WB attenuated permeability compared with shock: shock-FDPlts, 1,328 ± 462.6 (p = 0.05), and shock-WB, 1,024 ± 370.5 (p = 0.0108). However, human Plts (Days 1-3) did not attenuate vascular leak in HS mice compared with shock-LR (shock-Plts, 3,601 ± 1,581; p = 0.33). CONCLUSION: FDPlts contribute to clot formation similar to fresh human Plts. FDPlts also attenuated vascular permeability in vitro and in vivo. Mouse WB resuscitation but not fresh human Plts attenuated vascular permeability after HS. These data suggest that the effect of FDPlts may be a suitable alternative to fresh Plts in modulating hemostasis and the endotheliopathy associated with injury.


Asunto(s)
Plaquetas/fisiología , Permeabilidad Capilar/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Liofilización , Hemostasis/fisiología , Pulmón/irrigación sanguínea , Transfusión de Plaquetas , Choque Hemorrágico/terapia , Trombosis/sangre , Animales , Humanos , Ratones , Choque Hemorrágico/sangre
5.
J Trauma Acute Care Surg ; 89(6): 1068-1075, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32697449

RESUMEN

BACKGROUND: Hemorrhagic shock (HS) and trauma can result in an endotheliopathy of trauma, characterized by endothelial compromise, inflammation, and aberrant coagulation. Kcentra, a prothrombin concentrate, has been demonstrated to mitigate pulmonary vascular leak in a murine model of HS. We investigated the effects of Kcentra in a rat model of HS, to achieve physiologic endpoints of relevance. METHODS: Rats subjected to a grade intravenous splenic injury and controlled hemorrhage for 60 minutes were resuscitated with shed volumes of (1) Lactated Ringer's (LR) solution, (2) LR + 20 IU/kg Kcentra, (3) LR + 50 IU/kg Kcentra, (4) rat fresh frozen plasma (RFFP), or (5) human fresh frozen plasma (HFFP). Blood was harvested for monitoring metabolic and coagulation function. Rat lungs were evaluated for lung injury and permeability. RESULTS: Animals resuscitated with LR displayed a significant increase in pulmonary vascular permeability (sham, 407.9 ± 122.4; shock + LR, 2040 ± 1462). Resuscitation with RFFP (606.5 ± 169.3) reduced leak; however, treatment with Kcentra (HS + Kcentra [20 IU/kg]: 1792 ± 903.4, HS + Kcentra [50 IU/kg]: 1876 ± 1103), and HFFP (1450 ± 533.2) had no significant effect on permeability. Kcentra modestly altered clotting parameters. Metabolic measures, such as lactate, pH, and base deficit, were restored to baseline levels by both RFFP and HFFP, but not Kcentra or LR. CONCLUSION: Kcentra did not alter pulmonary vascular permeability, but modestly increased clotting potential in injured rats. This suggests that there may be a xenogenic reaction of human products in rats and that the effects of Kcentra on vascular stability may be distinct from its ability to modulate clotting. Our data indicate that the species chosen and utilized for in vivo preclinical testing of human derived blood products is of critical importance in determining their efficacy in animal models and is the primary impetus to communicate these results.


Asunto(s)
Factores de Coagulación Sanguínea/administración & dosificación , Inflamación/fisiopatología , Lesión Pulmonar/fisiopatología , Plasma , Choque Hemorrágico/terapia , Animales , Permeabilidad Capilar , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Inflamación/terapia , Pulmón/irrigación sanguínea , Pulmón/fisiopatología , Lesión Pulmonar/prevención & control , Masculino , Ratas , Ratas Sprague-Dawley , Lactato de Ringer/administración & dosificación , Choque Hemorrágico/mortalidad
6.
Trauma Surg Acute Care Open ; 3(1): e000171, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30023434

RESUMEN

BACKGROUND: Complications after injury, such as acute respiratory distress syndrome (ARDS), are common after traumatic brain injury (TBI) and associated with poor clinical outcomes. The mechanisms driving non-neurologic organ dysfunction after TBI are not well understood. Tissue inhibitor of matrix metalloproteinase-3 (TIMP-3) is a regulator of matrix metalloproteinase activity, inflammation, and vascular permeability, and hence has plausibility as a biomarker for the systemic response to TBI. METHODS: In a retrospective study of 182 patients with severe isolated TBI, we measured TIMP-3 in plasma obtained on emergency department arrival. We used non-parametric tests and logistic regression analyses to test the association of TIMP-3 with the incidence of ARDS within 8 days of admission and in-hospital mortality. RESULTS: TIMP-3 was significantly higher among subjects who developed ARDS compared with those who did not (median 2810 pg/mL vs. 2260 pg/mL, p=0.008), and significantly higher among subjects who died than among those who survived to discharge (median 2960 pg/mL vs. 2080 pg/mL, p<0.001). In an unadjusted logistic regression model, for each SD increase in plasma TIMP-3, the odds of ARDS increased significantly, OR 1.5 (95% CI 1.1 to 2.1). This association was only attenuated in multivariate models, OR 1.4 (95% CI 1.0 to 2.0). In an unadjusted logistic regression model, for each SD increase in plasma TIMP-3, the odds of death increased significantly, OR 1.7 (95% CI 1.2 to 2.3). The magnitude of this association was greater in a multivariate model adjusted for markers of injury severity, OR 1.9 (95% CI 1.2 to 2.8). DISCUSSION: TIMP-3 may play an important role in the biology of the systemic response to brain injury in humans. Along with clinical and demographic data, early measurements of plasma biomarkers such as TIMP-3 may help identify patients at higher risk of ARDS and death after severe isolated TBI. LEVEL OF EVIDENCE: III.

7.
J Trauma Acute Care Surg ; 84(2): 245-256, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251710

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have been shown to mitigate vascular permeability in hemorrhagic shock (HS) and trauma-induced brain and lung injury. Mechanistically, paracrine factors secreted from MSCs have been identified that can recapitulate many of the potent biologic effects of MSCs in animal models of disease. Interestingly, MSC-derived extracellular vesicles (EVs), contain many of these key soluble factors, and have therapeutic potential independent of the parent cells. In this study we sought to determine whether MSC-derived EVs (MSC EVs) could recapitulate the beneficial therapeutic effects of MSCs on lung vascular permeability induced by HS in mice. METHODS: Mesenchymal stem cell EVs were isolated from human bone marrow-derived MSCs by ultracentrifugation. A mouse model of fixed pressure HS was used to study the effects of shock, shock + MSCs and shock + MSC EVs on lung vascular endothelial permeability. Mice were administered MSCs, MSC EVs, or saline IV. Lung tissue was harvested and assayed for permeability, RhoA/Rac1 activation, and for differential phosphoprotein expression. In vitro, human lung microvascular cells junctional integrity was evaluated by immunocytochemistry and endothelial cell impedance assays. RESULTS: Hemorrhagic shock-induced lung vascular permeability was significantly decreased by both MSC and MSC EV infusion. Phosphoprotein profiling of lung tissue revealed differential activation of proteins and pathways related to cytoskeletal rearrangement and regulation of vascular permeability by MSCs and MSC EVs. Lung tissue from treatment groups demonstrated decreased activation of the cytoskeletal GTPase RhoA. In vitro, human lung microvascular cells, MSC CM but not MSC-EVs prevented thrombin-induced endothelial cell permeability as measured by electrical cell-substrate impedance sensing system and immunocytochemistry of VE-cadherin and actin. CONCLUSION: Mesenchymal stem cells and MSC EVs modulate cytoskeletal signaling and attenuate lung vascular permeability after HS. Mesenchymal stem cell EVs may potentially be used as a novel "stem cell free" therapeutic to treat HS-induced lung injury.


Asunto(s)
Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Vesículas Extracelulares , Lesión Pulmonar/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Choque Hemorrágico/complicaciones , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Citometría de Flujo , Laparotomía/efectos adversos , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Ratones , Ratones Endogámicos C57BL
8.
PLoS One ; 11(3): e0150930, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27008408

RESUMEN

INTRODUCTION: Acute traumatic coagulopathy has been associated with shock and tissue injury, and may be mediated via activation of the protein C pathway. Patients with acute traumatic coagulopathy have prolonged PT and PTT, and decreased activity of factors V and VIII; they are also hypocoagulable by thromboelastometry (ROTEM) and other viscoelastic assays. To test the etiology of this phenomenon, we hypothesized that such coagulopathy could be induced in vitro in healthy human blood with the addition of activated protein C (aPC). METHODS: Whole blood was collected from 20 healthy human subjects, and was "spiked" with increasing concentrations of purified human aPC (control, 75, 300, 2000 ng/mL). PT/PTT, factor activity assays, and ROTEM were performed on each sample. Mixed effect regression modeling was performed to assess the association of aPC concentration with PT/PTT, factor activity, and ROTEM parameters. RESULTS: In all subjects, increasing concentrations of aPC produced ROTEM tracings consistent with traumatic coagulopathy. ROTEM EXTEM parameters differed significantly by aPC concentration, with stepwise prolongation of clotting time (CT) and clot formation time (CFT), decreased alpha angle (α), impaired early clot formation (a10 and a20), and reduced maximum clot firmness (MCF). PT and PTT were significantly prolonged at higher aPC concentrations, with corresponding significant decreases in factor V and VIII activity. CONCLUSION: A phenotype of acute traumatic coagulopathy can be induced in healthy blood by the in vitro addition of aPC alone, as evidenced by viscoelastic measures and confirmed by conventional coagulation assays and factor activity. This may lend further mechanistic insight to the etiology of coagulation abnormalities in trauma, supporting the central role of the protein C pathway. Our findings also represent a model for future investigations in the diagnosis and treatment of acute traumatic coagulopathy.


Asunto(s)
Trastornos de la Coagulación Sanguínea/etiología , Proteína C/administración & dosificación , Adulto , Humanos , Técnicas In Vitro , Tromboelastografía
9.
J Trauma Acute Care Surg ; 79(6): 1009-13; discussion 1014, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26317815

RESUMEN

BACKGROUND: The initiation of coagulation in trauma is thought to originate from exposed tissue factor (TF); recent data have led to the alternative hypothesis that damage-associated molecular patterns may contribute to postinjury coagulation. In acute traumatic coagulopathy, aberrant coagulation is mediated via the activated protein C (aPC) pathway; the upstream regulators of this process and its relation to TF remain uncharacterized. To examine the role of the TF pathway in mediating acute traumatic coagulopathy, we used specific antibody blockades in an established murine model of traumatic hemorrhagic shock, hypothesizing that both coagulation activation after injury and aPC-mediated coagulopathy are driven by TF via thrombin. METHODS: Mice underwent an established model of trauma and hemorrhage and were subjected to either sham (vascular cannulation) or trauma-hemorrhage (cannulation, laparotomy, shock to mean arterial pressure of 35 mm Hg); they were monitored for 60 minutes before sacrifice. Mice in each group were pretreated with either targeted anti-TF antibody to block the TF pathway or hirudin for specific blockade of thrombin. Plasma was assayed for thrombin-antithrombin (TAT) and aPC by enzyme-linked immunosorbent assay. RESULTS: Compared with controls, trauma-hemorrhage mice treated with anti-TF antibody had significantly reduced levels of TAT (2.3 ng/mL vs. 5.7 ng/mL, p = 0.016) and corresponding decreases in aPC (16.3 ng/mL vs. 31.6 ng/mL, p = 0.034), with reductions to levels seen in sham mice. Direct inhibition of thrombin yielded similar results, with reduction in aPC to levels below those seen in sham mice. CONCLUSION: In this study, blockade of the TF pathway led to the attenuation of both thrombin production and aPC activation observed in traumatic shock. Specific thrombin inhibition achieved similar results, indicating that aPC-related coagulopathy is mediated via thrombin activated by the TF pathway. The near-complete blockade of TAT and aPC observed in this model argues for a dominant role of the TF-thrombin pathway in both coagulation activation after injury and traumatic coagulopathy.


Asunto(s)
Trastornos de la Coagulación Sanguínea/metabolismo , Choque Hemorrágico/sangre , Choque Traumático/sangre , Tromboplastina/metabolismo , Animales , Trastornos de la Coagulación Sanguínea/etiología , Ensayo de Inmunoadsorción Enzimática , Hirudinas/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína C/metabolismo , Trombina/metabolismo , Heridas y Lesiones/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA