Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Annu Rev Cell Dev Biol ; 31: 623-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566118

RESUMEN

The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.


Asunto(s)
Polaridad Celular/fisiología , Receptores Frizzled/metabolismo , Transducción de Señal/fisiología , Vía de Señalización Wnt/fisiología , Animales , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Humanos
2.
PLoS Genet ; 19(7): e1010849, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463168

RESUMEN

Epithelial tissues can be polarized along two axes: in addition to apical-basal polarity they are often also polarized within the plane of the epithelium, known as planar cell polarity (PCP). PCP depends upon the conserved Wnt/Frizzled (Fz) signaling factors, including Fz itself and Van Gogh (Vang/Vangl in mammals). Here, taking advantage of the complementary features of Drosophila wing and mouse skin PCP establishment, we dissect how Vang/Vangl phosphorylation on a specific conserved tyrosine residue affects its interaction with two cytoplasmic core PCP factors, Dishevelled (Dsh/Dvl1-3 in mammals) and Prickle (Pk/Pk1-3). We demonstrate that Pk and Dsh/Dvl bind to Vang/Vangl in an overlapping region centered around this tyrosine. Strikingly, Vang/Vangl phosphorylation promotes its binding to Prickle, a key effector of the Vang/Vangl complex, and inhibits its interaction with Dishevelled. Thus phosphorylation of this tyrosine appears to promote the formation of the mature Vang/Vangl-Pk complex during PCP establishment and conversely it inhibits the Vang interaction with the antagonistic effector Dishevelled. Intriguingly, the phosphorylation state of this tyrosine might thus serve as a switch between transient interactions with Dishevelled and stable formation of Vang-Pk complexes during PCP establishment.


Asunto(s)
Polaridad Celular , Proteínas Dishevelled , Proteínas de Drosophila , Proteínas de la Membrana , Animales , Ratones , Polaridad Celular/genética , Proteínas Dishevelled/genética , Proteínas Dishevelled/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosforilación
3.
Dev Biol ; 514: 37-49, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38885804

RESUMEN

The conserved bazooka (baz/par3) gene acts as a key regulator of asymmetrical cell divisions across the animal kingdom. Associated Par3/Baz-Par6-aPKC protein complexes are also well known for their role in the establishment of apical/basal cell polarity in epithelial cells. Here we define a novel, positive function of Baz/Par3 in the Notch pathway. Using Drosophila wing and eye development, we demonstrate that Baz is required for Notch signaling activity and optimal transcriptional activation of Notch target genes. Baz appears to act independently of aPKC in these contexts, as knockdown of aPKC does not cause Notch loss-of-function phenotypes. Using transgenic Notch constructs, our data positions Baz activity downstream of activating Notch cleavage steps and upstream of Su(H)/CSL transcription factor complex activity on Notch target genes. We demonstrate a biochemical interaction between NICD and Baz, suggesting that Baz is required for NICD activity before NICD binds to Su(H). Taken together, our data define a novel role of the polarity protein Baz/Par3, as a positive and direct regulator of Notch signaling through its interaction with NICD.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Transducción de Señal , Alas de Animales , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores Notch/metabolismo , Alas de Animales/metabolismo , Alas de Animales/embriología , Alas de Animales/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Unión Proteica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/embriología , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Drosophila/metabolismo , Drosophila/embriología , Polaridad Celular , Péptidos y Proteínas de Señalización Intracelular
4.
Cell ; 142(5): 674-6, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20813254

RESUMEN

The generation of planar cell polarity (PCP) and tissue shape during morphogenesis is tightly linked, but it is not clear how. Aigouy et al. (2010) now show in the developing Drosophila wing that PCP initially has a radial orientation that becomes realigned to the proximal-distal axis of organ shape by mechanical forces and cell rearrangements mediated by Dachsous.

5.
Cell ; 137(2): 209-11, 2009 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-19379687

RESUMEN

Planar cell polarity (PCP) regulates the orientation of cells in epithelia and of mesenchymal cells during gastrulation. In this issue, Narimatsu et al. (2009) report that the Smurf E3 ubiquitin ligases are required for localized protein degradation of a core PCP factor to generate cellular asymmetry.


Asunto(s)
Polaridad Celular , Cóclea/embriología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Drosophila , Gastrulación , Ratones , Alas de Animales/embriología
6.
Development ; 147(24)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33355240

RESUMEN

Planar cell polarity (PCP) reflects cellular orientation within the plane of an epithelium. PCP is crucial during many biological patterning processes and for organ function. It is omnipresent, from convergent-extension mechanisms during early development through to terminal organogenesis, and it regulates many aspects of cell positioning and orientation during tissue morphogenesis, organ development and homeostasis. Suzanne Eaton used the power of Drosophila as a model system to study PCP, but her vision of, and impact on, PCP studies in flies translates to all animal models. As I highlight here, Suzanne's incorporation of quantitative biophysical studies of whole tissues, integrated with the detailed cell biology of PCP phenomena, completely changed how the field studies this intriguing feature. Moreover, Suzanne's impact on ongoing and future PCP studies is fundamental, long-lasting and transformative.


Asunto(s)
Polaridad Celular/genética , Morfogénesis/genética , Organogénesis/genética , Análisis de la Célula Individual , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Desarrollo Embrionario/genética , Epitelio/crecimiento & desarrollo , Distribución Tisular/genética , Alas de Animales/crecimiento & desarrollo
7.
PLoS Genet ; 14(1): e1007153, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309414

RESUMEN

AKAP200 is a Drosophila melanogaster member of the "A Kinase Associated Protein" family of scaffolding proteins, known for their role in the spatial and temporal regulation of Protein Kinase A (PKA) in multiple signaling contexts. Here, we demonstrate an unexpected function of AKAP200 in promoting Notch protein stability. In Drosophila, AKAP200 loss-of-function (LOF) mutants show phenotypes that resemble Notch LOF defects, including eye patterning and sensory organ specification defects. Through genetic interactions, we demonstrate that AKAP200 interacts positively with Notch in both the eye and the thorax. We further show that AKAP200 is part of a physical complex with Notch. Biochemical studies reveal that AKAP200 stabilizes endogenous Notch protein, and that it limits ubiquitination of Notch. Specifically, our genetic and biochemical evidence indicates that AKAP200 protects Notch from the E3-ubiquitin ligase Cbl, which targets Notch to the lysosomal pathway. Indeed, we demonstrate that the effect of AKAP200 on Notch levels depends on the lysosome. Interestingly, this function of AKAP200 is fully independent of its role in PKA signaling and independent of its ability to bind PKA. Taken together, our data indicate that AKAP200 is a novel tissue specific posttranslational regulator of Notch, maintaining high Notch protein levels and thus promoting Notch signaling.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster , Lisosomas/metabolismo , Proteínas de la Membrana/fisiología , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptores Notch/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Larva , Proteínas de la Membrana/genética , Estabilidad Proteica , Transducción de Señal/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
8.
PLoS Genet ; 14(5): e1007391, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29758044

RESUMEN

Planar cell polarity (PCP) instructs tissue patterning in a wide range of organisms from fruit flies to humans. PCP signaling coordinates cell behavior across tissues and is integrated by cells to couple cell fate identity with position in a developing tissue. In the fly eye, PCP signaling is required for the specification of R3 and R4 photoreceptors based upon their positioning relative to the dorso-ventral axis. The 'core' PCP pathway involves the asymmetric localization of two distinct membrane-bound complexes, one containing Frizzled (Fz, required in R3) and the other Van Gogh (Vang, required in R4). Inhibitory interactions between the cytosolic components of each complex reinforce asymmetric localization. Prickle (Pk) and Spiny-legs (Pk-Sple) are two antagonistic isoforms of the prickle (pk) gene and are cytoplasmic components of the Vang complex. The balance between their levels is critical for tissue patterning, with Pk-Sple being the major functional isoform in the eye. Here we uncover a post-translational role for Nemo kinase in limiting the amount of the minor isoform Pk. We identified Pk as a Nemo substrate in a genome-wide in vitro band-shift screen. In vivo, nemo genetically interacts with pkpk but not pksple and enhances PCP defects in the eye and leg. Nemo phosphorylation limits Pk levels and is required specifically in the R4 photoreceptor like the major isoform, Pk-Sple. Genetic interaction and biochemical data suggest that Nemo phosphorylation of Pk leads to its proteasomal degradation via the Cullin1/SkpA/Slmb complex. dTAK and Homeodomain interacting protein kinase (Hipk) may also act together with Nemo to target Pk for degradation, consistent with similar observations in mammalian studies. Our results therefore demonstrate a mechanism to maintain low levels of the minor Pk isoform, allowing PCP complexes to form correctly and specify cell fate.


Asunto(s)
Polaridad Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas con Dominio LIM/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Animales , Animales Modificados Genéticamente , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ojo/citología , Ojo/metabolismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteolisis , Transducción de Señal/genética , Especificidad por Sustrato , Alas de Animales/citología , Alas de Animales/metabolismo
9.
Bioessays ; 38(12): 1234-1245, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27774671

RESUMEN

Planar cell polarity (PCP)-signaling and associated tissue polarization are evolutionarily conserved. A well documented feature of PCP-signaling in vertebrates is its link to centriole/cilia positioning, although the relationship of PCP and ciliogenesis is still debated. A recent report in Drosophila established that Frizzled (Fz)-PCP core signaling has an instructive input to polarized centriole positioning in non-ciliated Drosophila wing epithelia as a PCP read-out. Here, we review the impact of this observation in the context of recent descriptions of the relationship(s) of core Fz-PCP signaling and cilia/centriole positioning in epithelial and non-epithelial cells. All existing data are consistent with a model where Fz-PCP signaling functions upstream of centriole/cilia positioning, independent of ciliogenesis. The combined data sets indicate that the Fz-Dsh PCP complex is instructive for centriole/ciliary positioning via an actin-based mechanism. Thereby, centriole/cilia/centrosome positioning can be considered an evolutionarily conserved readout and common downstream effect of PCP-signaling from flies to mammals.


Asunto(s)
Polaridad Celular , Centriolos/fisiología , Células Epiteliales/fisiología , Receptores Frizzled/fisiología , Transducción de Señal , Animales , Células Epiteliales/metabolismo
10.
Genes Dev ; 24(19): 2157-68, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20837657

RESUMEN

Abelson (Abl) family tyrosine kinases have been implicated in cell morphogenesis, adhesion, motility, and oncogenesis. Using a candidate approach for genes involved in planar cell polarity (PCP) signaling, we identified Drosophila Abl (dAbl) as a modulator of Frizzled(Fz)/PCP signaling. We demonstrate that dAbl positively regulates the Fz/Dishevelled (Dsh) PCP pathway without affecting canonical Wnt/Wg-Fz signaling. Genetic dissection suggests that Abl functions via Fz/Dsh signaling in photoreceptor R3 specification, a well-established Fz-PCP signaling readout. Molecular analysis shows that dAbl binds and phosphorylates Dsh on Tyr473 within the DEP domain. This phosphorylation event on Dsh is functionally critical, as the equivalent DshY473F mutant is nonfunctional in PCP signaling and stable membrane association, although it rescues canonical Wnt signaling. Strikingly, mouse embryonic fibroblasts (MEFs) deficient for Abl1 and Abl2/Arg genes also show reduced Dvl2 phosphorylation as compared with control MEFs, and this correlates with a change in subcellular localization of endogenous Dvl2. As in Drosophila, such Abl-deficient MEFs show no change in canonical Wnt signaling. Taken together, our results argue for a conserved role of Abl family members in the positive regulation of Dsh activity toward Fz-Dsh/PCP signaling by Dsh phosphorylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores Frizzled/metabolismo , Fosfoproteínas/metabolismo , Células Fotorreceptoras de Invertebrados/citología , Proteínas Tirosina Quinasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Animales , Proteínas Dishevelled , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Fenotipo , Fosforilación , Unión Proteica
11.
EMBO J ; 31(4): 1028-40, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22157816

RESUMEN

Tropomyosins are widespread actin-binding proteins that influence numerous cellular functions including actin dynamics, cell migration, tumour suppression, and Drosophila oocyte development. Synaptopodin is another actin-binding protein with a more restricted expression pattern in highly dynamic cell compartments such as kidney podocyte foot processes, where it promotes RhoA signalling by blocking the Smurf1-mediated ubiquitination of RhoA. Here, we show that synaptopodin has a shorter half-life but shares functional properties with the highly stable tropomyosin. Transgenic expression of synaptopodin restores oskar mRNA localization in Drosophila oocytes mutant for TmII, thereby rescuing germline differentiation and fertility. Synaptopodin restores stress fibres in tropomyosin-deficient human MDA-MB 231 breast cancer cells and TPMα-depleted fibroblasts. Gene silencing of TPMα but not TPMß causes loss of stress fibres by promoting Smurf1-mediated ubiquitination and proteasomal degradation of RhoA. Functionally, overexpression of synaptopodin or RhoA(K6,7R) significantly reduces MDA-MB 231 cell migration. Our findings elucidate RhoA stabilization by structurally unrelated actin-binding proteins as a conserved mechanism for regulation of stress fibre dynamics and cell motility in a cell type-specific fashion.


Asunto(s)
Proteínas de Microfilamentos/fisiología , Neoplasias/genética , Tropomiosina/genética , Tropomiosina/fisiología , Proteína de Unión al GTP rhoA/fisiología , Animales , Animales Modificados Genéticamente , Línea Celular Tumoral , Humanos , Ratones , Células 3T3 NIH , Neoplasias/patología
12.
PLoS Genet ; 9(8): e1003603, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966864

RESUMEN

The role of Wnt signaling in embryonic development and stem cell maintenance is well established and aberrations leading to the constitutive up-regulation of this pathway are frequent in several types of human cancers. Upon ligand-mediated activation, Wnt receptors promote the stabilization of ß-catenin, which translocates to the nucleus and binds to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors to regulate the expression of Wnt target genes. When not bound to ß-catenin, the TCF/LEF proteins are believed to act as transcriptional repressors. Using a specific lentiviral reporter, we identified hematopoietic tumor cells displaying constitutive TCF/LEF transcriptional activation in the absence of ß-catenin stabilization. Suppression of TCF/LEF activity in these cells mediated by an inducible dominant-negative TCF4 (DN-TCF4) inhibited both cell growth and the expression of Wnt target genes. Further, expression of TCF1 and LEF1, but not TCF4, stimulated TCF/LEF reporter activity in certain human cell lines independently of ß-catenin. By a complementary approach in vivo, TCF1 mutants, which lacked the ability to bind to ß-catenin, induced Xenopus embryo axis duplication, a hallmark of Wnt activation, and the expression of the Wnt target gene Xnr3. Through generation of different TCF1-TCF4 fusion proteins, we identified three distinct TCF1 domains that participate in the ß-catenin-independent activity of this transcription factor. TCF1 and LEF1 physically interacted and functionally synergized with members of the activating transcription factor 2 (ATF2) family of transcription factors. Moreover, knockdown of ATF2 expression in lymphoma cells phenocopied the inhibitory effects of DN-TCF4 on the expression of target genes associated with the Wnt pathway and on cell growth. Together, our findings indicate that, through interaction with ATF2 factors, TCF1/LEF1 promote the growth of hematopoietic malignancies in the absence of ß-catenin stabilization, thus establishing a new mechanism for TCF1/LEF1 transcriptional activity distinct from that associated with canonical Wnt signaling.


Asunto(s)
Factor de Transcripción Activador 2/genética , Carcinogénesis/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Neoplasias/genética , beta Catenina/genética , Factor de Transcripción Activador 2/metabolismo , Animales , Línea Celular Tumoral , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Humanos , Neoplasias/patología , Regiones Promotoras Genéticas , Transducción de Señal , Activación Transcripcional/genética , Vía de Señalización Wnt/genética , Xenopus laevis
13.
EMBO Rep ; 14(8): 718-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23797875

RESUMEN

Wnt/ß-catenin signalling is central to development and its regulation is essential in preventing cancer. Using phosphorylation of Dishevelled as readout of pathway activation, we identified Drosophila Wnk kinase as a new regulator of canonical Wnt/ß-catenin signalling. WNK kinases are known for regulating ion co-transporters associated with hypertension disorders. We demonstrate that wnk loss-of-function phenotypes resemble canonical Wnt pathway mutants, while Wnk overexpression causes gain-of-function canonical Wnt-signalling phenotypes. Importantly, knockdown of human WNK1 and WNK2 also results in decreased Wnt signalling in mammalian cell culture, suggesting that Wnk kinases have a conserved function in ensuring peak levels of canonical Wnt signalling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Proteínas de Drosophila , Drosophila melanogaster , Regulación de la Expresión Génica , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lentivirus/genética , Antígenos de Histocompatibilidad Menor , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1 , beta Catenina/metabolismo
14.
Dev Biol ; 377(1): 113-25, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23428616

RESUMEN

Ommatidial rotation is one of the most important events for correct patterning of the Drosophila eye. Although several signaling pathways are involved in this process, few genes have been shown to specifically affect it. One of them is nemo (nmo), which encodes a MAP-like protein kinase that regulates the rate of rotation throughout the entire process, and serves as a link between core planar cell polarity (PCP) factors and the E-cadherin-ß-catenin complex. To determine more precisely the role of nmo in ommatidial rotation, live-imaging analyses in nmo mutant and wild-type early pupal eye discs were performed. We demonstrate that ommatidial rotation is not a continuous process, and that rotating and non-rotating interommatidial cells are very dynamic. Our in vivo analyses also show that nmo regulates the speed of rotation and is required in cone cells for correct ommatidial rotation, and that these cells as well as interommatidial cells are less dynamic in nmo mutants. Furthermore, microarray analyses of nmo and wild-type larval eye discs led us to identify new genes and signaling pathways related to nmo function during this process. One of them, miple, encodes the Drosophila ortholog of the midkine/pleiotrophin secreted cytokines that are involved in cell migration processes. miple is highly up-regulated in nmo mutant discs. Indeed, phenotypic analyses reveal that miple overexpression leads to ommatidial rotation defects. Genetic interaction assays suggest that miple is signaling through Ptp99A, the Drosophila ortholog of the vertebrate midkine/pleiotrophin PTPζ receptor. Accordingly, we propose that one of the roles of Nmo during ommatial rotation is to repress miple expression, which may in turn affect the dynamics in E-cadherin-ß-catenin complexes.


Asunto(s)
Tipificación del Cuerpo , Citocinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Ojo/anatomía & histología , Ojo/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Tipificación del Cuerpo/genética , Cadherinas/metabolismo , Citocinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestructura , Ojo/metabolismo , Ojo/ultraestructura , Femenino , Perfilación de la Expresión Génica , Estudios de Asociación Genética , Discos Imaginales/citología , Discos Imaginales/metabolismo , Discos Imaginales/ultraestructura , Imagenología Tridimensional , Midkina , Modelos Biológicos , Mutación/genética , Fenotipo , Rotación , beta Catenina/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(7): 2819-24, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21285373

RESUMEN

Primary cilia are required for several signaling pathways, but their function in cellular morphogenesis is poorly understood. Here we show that emergence of an hexagonal cellular pattern during development of the corneal endothelium (CE), a monolayer of neural crest-derived cells that maintains corneal transparency, depends on a precise temporal control of assembly of primary cilia that subsequently disassemble in adult corneal endothelial cells (CECs). However, cilia reassembly occurs rapidly in response to an in vivo mechanical injury and precedes basal body polarization and cellular elongation in mature CECs neighboring the wound. In contrast, CE from hypomorphic IFT88 mutants (Tg737(orpk)) or following in vivo lentiviral-mediated IFT88 knockdown display dysfunctional cilia and show disorganized patterning, mislocalization of junctional markers, and accumulation of cytoplasmic acetylated tubulin. Our results indicate an active role of cilia in orchestrating coordinated morphogenesis of CECs during development and repair and define the murine CE as a powerful in vivo system to study ciliary-based cellular dynamics.


Asunto(s)
Cilios/fisiología , Pérdida de Celulas Endoteliales de la Córnea/fisiopatología , Endotelio Corneal/embriología , Endotelio Corneal/lesiones , Morfogénesis , Animales , Endotelio Corneal/ultraestructura , Técnicas de Silenciamiento del Gen , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Interferencia de ARN , Proteínas Supresoras de Tumor/genética
16.
Nat Genet ; 37(5): 537-43, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15852005

RESUMEN

Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Dishevelled , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt , Proteínas de Xenopus , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Cell Rep ; 43(6): 114362, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870008

RESUMEN

Wnt/Wingless (Wg) signaling is critical in development and disease, including cancer. Canonical Wnt signaling is mediated by ß-catenin/Armadillo (Arm in Drosophila) transducing signals to the nucleus, with IFT-A/Kinesin 2 complexes promoting nuclear translocation of ß-catenin/Arm. Here, we demonstrate that a conserved small N-terminal Arm34-87/ß-catenin peptide binds to IFT140, acting as a dominant interference tool to attenuate Wg/Wnt signaling in vivo. Arm34-87 expression antagonizes endogenous Wnt/Wg signaling, resulting in the reduction of its target expression. Arm34-87 inhibits Wg/Wnt signaling by interfering with nuclear translocation of endogenous Arm/ß-catenin, and this can be modulated by levels of wild-type ß-catenin or IFT140, with the Arm34-87 effect being enhanced or suppressed. Importantly, this mechanism is conserved in mammals with the equivalent ß-catenin24-79 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt signaling can be regulated by a defined N-terminal ß-catenin peptide and thus might serve as an entry point for therapeutic applications to attenuate Wnt/ß-catenin signaling.


Asunto(s)
Proteínas del Dominio Armadillo , Núcleo Celular , Proteínas de Drosophila , Vía de Señalización Wnt , beta Catenina , beta Catenina/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Núcleo Celular/metabolismo , Humanos , Proteínas del Dominio Armadillo/metabolismo , Proteínas del Dominio Armadillo/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Transporte Activo de Núcleo Celular , Drosophila melanogaster/metabolismo , Péptidos/metabolismo , Péptidos/farmacología , Unión Proteica , Secuencia de Aminoácidos , Factores de Transcripción
19.
Development ; 137(21): 3719-27, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20940230

RESUMEN

Abl is an essential regulator of cell migration and morphogenesis in both vertebrates and invertebrates. It has long been speculated that the adaptor protein Disabled (Dab), which is a key regulator of neuronal migration in the vertebrate brain, might be a component of this signaling pathway, but this idea has been controversial. We now demonstrate that null mutations of Drosophila Dab result in phenotypes that mimic Abl mutant phenotypes, both in axon guidance and epithelial morphogenesis. The Dab mutant interacts genetically with mutations in Abl, and with mutations in the Abl accessory factors trio and enabled (ena). Genetic epistasis tests show that Dab functions upstream of Abl and ena, and, consistent with this, we show that Dab is required for the subcellular localization of these two proteins. We therefore infer that Dab is a bona fide component of the core Abl signaling pathway in Drosophila.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila/embriología , Drosophila/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Tirosina Quinasas/genética , Animales , Animales Modificados Genéticamente , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Epistasis Genética , Femenino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Modelos Biológicos , Neuronas Motoras/metabolismo , Neuronas Motoras/fisiología , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398005

RESUMEN

Wnt/Wingless (Wg) signaling is critical for many developmental patterning processes and linked to diseases, including cancer. Canonical Wnt-signaling is mediated by ß-catenin, Armadillo/Arm in Drosophila transducing signal activation to a nuclear response. The IFT-A/Kinesin-2 complex is required to promote the nuclear translocation of ß-catenin/Arm. Here, we define a small conserved N-terminal Arm/ß-catenin (Arm 34-87 ) peptide, which binds IFT140, as a dominant interference tool to attenuate Wg/Wnt-signaling in vivo . Expression of Arm 34-87 is sufficient to antagonize endogenous Wnt/Wg-signaling activation resulting in marked reduction of Wg-signaling target gene expression. This effect is modulated by endogenous levels of Arm and IFT140, with the Arm 34-87 effect being enhanced or suppressed, respectively. Arm 34-87 thus inhibits Wg/Wnt-signaling by interfering with the nuclear translocation of endogenous Arm/ß-catenin. Importantly, this mechanism is conserved in mammals with the equivalent ß-catenin 34-87 peptide blocking nuclear translocation and pathway activation, including in cancer cells. Our work indicates that Wnt-signaling can be regulated by a defined N-terminal peptide of Arm/ß-catenin, and thus this might serve as an entry point for potential therapeutic applications to attenuate Wnt/ß-catenin signaling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA