Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 163(7): 1889-1895, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29594364

RESUMEN

Rabies, which is caused by the rabies virus (RABV), is an ancient zoonosis that has a high mortality rate. Previous studies have indicated that recombinant RABV expressing canine interleukin-6 (rHEP-CaIL6), induced more virus-neutralizing antibodies than parental RABV in mice following intramuscular immunization. To investigate the immune response induced in the CNS by rHEP-CaIL6 after intranasal or intracranial administration in mice, the permeability of the blood-brain barrier (BBB), the infiltration of CD3 T cells, and innate immune response-related effector molecules in the CNS were examined. It was observed that infection of rHEP-CaIL6 led to enhanced BBB permeability following intranasal infection. More CD3 T cells infiltrated into the central nervous system (CNS) in mice infected with rHEP-CaIL6 than in those infected with the HEP-Flury strain. Furthermore, rHEP-CaIL6 induced an increased expression of innate immune response-related effector molecules, compared with the parental HEP-Flury strain, within the CNS. Taken together, these findings suggest that rHEP-CaIL6 induced stronger immune responses in mice brains, which is more beneficial for virus clearance. These results may also partly illustrate the role of IL6 in RABV infection.


Asunto(s)
Encéfalo/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Virus de la Rabia/genética , Virus de la Rabia/inmunología , Rabia/inmunología , Administración Intranasal , Animales , Barrera Hematoencefálica , Encéfalo/virología , Perros , Inmunidad Innata , Factores Inmunológicos , Ratones , Rabia/virología , Linfocitos T/inmunología
2.
Front Microbiol ; 11: 109, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153520

RESUMEN

Enhancement of blood-brain barrier (BBB) permeability is necessary for clearing virus in the central nervous system (CNS). It has been reported that only laboratory-attenuated rabies virus (RABV) induces inflammatory response to lead BBB transient breakdown rather than wild-type (wt) strains. As a component of ribonucleoprotein (RNP), phosphoprotein (P) of RABV plays a key role in viral replication and pathogenicity. To our knowledge, the function of RABV P gene during RABV invasion was unclear so far. In order to determine the role of RABV P gene during RABV infection, we evaluated the BBB permeability in vivo after infection with wt RABV strain (GD-SH-01), a lab-attenuated RABV strain (HEP-Flury), and a chimeric RABV strain (rHEP-SH-P) whose P gene cloned from GD-SH-01 was expressed in the genomic backbone of HEP-Flury. We found that rHEP-SH-P caused less enhancement of BBB permeability and was less pathogenic to adult mice than GD-SH-01 and HEP-Flury. In an effort to investigate the mechanism, we found that the replication of rHEP-SH-P has been limited due to the suppressed P protein expression and induced less response to maintain BBB integrity. Our data indicated that the P gene of wt RABV was a potential determinant in hampering viral replication in vivo, which kept BBB integrity. These findings provided an important foundation for understanding the viral invasion and development of novel vaccine.

3.
Viruses ; 12(1)2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861477

RESUMEN

Rabies virus (RABV) matrix (M) protein plays several important roles during RABV infection. Although previous studies have assessed the functions of M through gene rearrangements, this interferes with the position of other viral proteins. In this study, we attenuated M expression through deoptimizing its codon usage based on codon pair bias in RABV. This strategy more objectively clarifies the role of M during virus infection. Codon-deoptimized M inhibited RABV replication during the early stages of infection, but enhanced viral titers at later stages. Codon-deoptimized M also inhibited genome synthesis at early stage of infection and increased the RABV transcription rates. Attenuated M through codon deoptimization enhanced RABV glycoprotein expression following RABV infection in neuronal cells, but had no influence on the cell-to-cell spread of RABV. In addition, codon-deoptimized M virus induced higher levels of apoptosis compared to the parental RABV. These results indicate that codon-deoptimized M increases glycoprotein expression, providing a foundation for further investigation of the role of M during RABV infection.


Asunto(s)
Codón , Virus de la Rabia/fisiología , Rabia/virología , Proteínas de la Matriz Viral/genética , Replicación Viral , Animales , Apoptosis , Línea Celular , Regulación Viral de la Expresión Génica , Ratones , Transcripción Genética , Carga Viral , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA