Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Kidney Blood Press Res ; 47(1): 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34784607

RESUMEN

AIM: The present study aimed to elucidate the potential function of microRNA 1228 (miR-1228) on the high glucose (HG)-damaged human renal proximal tubule cells (HK-2) and the underlying mechanism. METHODS: The datasets GSE47185 and GSE51674 were downloaded from the Gene Expression Omnibus database for mining differently expressed mRNAs and miRNAs, respectively. Bioinformatics online tools were applied to predict the binding sites between miR-1228 and thrombospondin 2 (THBS2), which was confirmed by dual-luciferase assay. Real-time quantitative polymerase chain reaction was used to detect the mRNA level of miR-1228/THBS2. Western blot was used to detect the protein level of THBS2 and the PI3K/AKT signaling pathway-associated markers. HK-2 cells were cultured in HG (30 mM) to mimic hyperglycemia. Cell counting kit 8 and flow cytometry assays were utilized to determine the cell proliferation and apoptosis. RESULTS: The expression of THBS2 was significantly upregulated in diabetic nephropathy (DN) based on bioinformatics tools and identified as a direct target of miR-1228. miR-1228 was downregulated in DN and HG-damaged HK-2 cells. HG notably reduced HK-2 cell proliferation. This negative effect was attenuated by transfecting with an miR-1228 mimic and aggravated by transfecting with an miR-1228 inhibitor. However, under basal condition, there was no significant effect on the HK-2 cell proliferation among blank control, mimic, and inhibitor groups. Overexpression of THBS2 abolished the elevating effect of the miR-1228 mimic on the HG-damaged HK-2 cell proliferation, while restored the inhibitory effects of the miR-1228 mimic on the cell apoptosis. On the contrary, the suppressive effects on the proliferation and the enhancive effects on the apoptosis by silencing miR-1228 in HK-2 cells stimulated with HG can be weakened by recommendation of THBS2 small interference RNAs. Furthermore, we also found that HG significantly enhanced the phosphorylation levels of PI3K and AKT. In terms of overexpression and knockdown experiments, Western blot analysis further revealed that miR-1228 inhibited the activation of the PI3K/AKT signaling pathway in HG-damaged HK-2 cells by regulating THBS2. CONCLUSION: The findings illustrated that miR-1228 improved survivability and inhibited apoptosis in HK-2 cells stimulated with HG partly by restraining the activation of the PI3K/AKT signaling pathway.


Asunto(s)
Glucosa/metabolismo , Túbulos Renales Proximales/metabolismo , MicroARNs/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trombospondinas/genética , Línea Celular , Supervivencia Celular , Regulación de la Expresión Génica , Humanos , Túbulos Renales Proximales/citología , MicroARNs/metabolismo , Transducción de Señal , Trombospondinas/metabolismo
2.
Biotechnol Lett ; 43(2): 393-405, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33165673

RESUMEN

OBJECTIVE: Myocardial infarction (MI) is a prevalent cardiovascular puzzle and a mainspring of disease-induced mortality. We performed this investigation to detect the role of putative important miRNAs or genes in MI. RESULTS: CCL20 may be a potential therapeutic target, which was directly targeted and negatively regulated by miR-19a. CCL20 expression was significantly increased in MI tissue samples, but miR-19a was expressed at lower levels in MI. H/R treatment inhibited cell viability and induced an increase of apoptotic rate compared with Sham group. However, miR-19a mimic relieved the H/R-stimulated injury to cardiomyocytes. Protective effect of miR-19a against H/R in cardiomyocytes was reversed by CCL20 enhancement, and MAPK pathway was inactivated during this progression. CONCLUSIONS: miR-19a eliminates the H/R-induced injury in cardiomyocytes through directly targeting CCL20 and attenuating the activity of MAPK signaling pathway. These observations highlighted the therapeutic roles of miR-19a and CCL20 for MI treatment.


Asunto(s)
Quimiocina CCL20/genética , MicroARNs/genética , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/genética , Apoptosis/genética , Hipoxia de la Célula/genética , Supervivencia Celular/genética , Regulación de la Expresión Génica/genética , Humanos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Terapia Molecular Dirigida , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Oxígeno/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA