Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Apoptosis ; 29(3-4): 357-371, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37945814

RESUMEN

BACKGROUND: Tyrosine kinase inhibitors (TKIs) targeting fms-like tyrosine kinase 3 (Flt3) such as quizartinib were specifically designed for acute myeloid leukemia treatment, but also multi-targeting TKIs applied to solid tumor patients inhibit Flt3. Flt3 is expressed in the heart and its activation is cytoprotective in myocardial infarction (MI) in mice. OBJECTIVES: We sought to test whether Flt3-targeting TKI treatment aggravates cardiac injury after MI. METHODS AND RESULTS: Compared to vehicle, quizartinib (10 mg/kg/day, gavage) did not alter cardiac dimensions or function in healthy mice after four weeks of therapy. Pretreated mice were randomly assigned to MI or sham surgery while receiving quizartinib or vehicle for one more week. Quizartinib did not aggravate the decline in ejection fraction, but significantly enhanced ventricular dilatation one week after infarction. In addition, apoptotic cell death was significantly increased in the myocardium of quizartinib-treated compared to vehicle-treated mice. In vitro, quizartinib dose-dependently decreased cell viability in neonatal rat ventricular myocytes and in H9c2 cells, and increased apoptosis as assessed in the latter. Together with H2O2, quizartinib potentiated the phosphorylation of the pro-apoptotic mitogen activated protein kinase p38 and augmented H2O2-induced cell death and apoptosis beyond additive degree. Pretreatment with a p38 inhibitor abolished apoptosis under quizartinib and H2O2. CONCLUSION: Quizartinib potentiates apoptosis and promotes maladaptive remodeling after MI in mice at least in part via a p38-dependent mechanism. These findings are consistent with the multi-hit hypothesis of cardiotoxicity and make cardiac monitoring in patients with ischemic heart disease under Flt3- or multi-targeting TKIs advisable.


Asunto(s)
Leucemia Mieloide Aguda , Infarto del Miocardio , Humanos , Ratones , Ratas , Animales , Tirosina Quinasa 3 Similar a fms/genética , Peróxido de Hidrógeno , Apoptosis , Leucemia Mieloide Aguda/metabolismo , Benzotiazoles/farmacología , Compuestos de Fenilurea/farmacología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Inhibidores de Proteínas Quinasas/farmacología
2.
Arterioscler Thromb Vasc Biol ; 33(9): 2187-92, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23908248

RESUMEN

OBJECTIVE: Antioxidative drugs continue to be developed for the treatment of atherosclerosis. Apocynin is an nicotinamide adenine dinucleotide phosphate oxidase inhibitor with anti-inflammatory properties. We used contrast-enhanced ultrasound molecular imaging to assess whether short-term apocynin therapy in atherosclerosis reduces vascular oxidative stress and endothelial activation APPROACH AND RESULTS: Genetically modified mice with early atherosclerosis were studied at baseline and after 7 days of therapy with apocynin (4 mg/kg per day IP) or saline. Contrast-enhanced ultrasound molecular imaging of the aorta was performed with microbubbles targeted to vascular cell adhesion molecule 1 (VCAM-1; MB(V)), to platelet glycoprotein Ibα (MB(Pl)), and control microbubbles (MB(Ctr)). Aortic vascular cell adhesion molecule 1 was measured using Western blot. Aortic reactive oxygen species generation was measured using a lucigenin assay. Hydroethidine oxidation was used to assess aortic superoxide generation. Baseline signal for MBV (1.3 ± 0.3 AU) and MB(Pl )(1.5 ± 0.5 AU) was higher than for MBCtr (0.5 ± 0.2 AU; P<0.01). In saline-treated animals, signal did not significantly change for any microbubble agent, whereas short-term apocynin significantly (P<0.05) reduced vascular cell adhesion molecule 1 and platelet signal (MBV: 0.3 ± 0.1; MBPl: 0.4 ± 0.1; MBCtr: 0.3 ± 0.2 AU; P=0.6 between agents). Apocynin reduced aortic vascular cell adhesion molecule 1 expression by 50% (P<0.05). However, apocynin therapy did not reduce reactive oxygen species content, superoxide generation, or macrophage content. CONCLUSIONS: Short-term treatment with apocynin in atherosclerosis reduces endothelial cell adhesion molecule expression. This change in endothelial phenotype can be detected by molecular imaging before any measurable decrease in macrophage content and is not associated with a detectable change in oxidative burden.


Asunto(s)
Acetofenonas/farmacología , Antiinflamatorios/farmacología , Enfermedades de la Aorta/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Imagen Molecular/métodos , Ultrasonografía Intervencional , Desaminasas APOBEC-1 , Animales , Antioxidantes/farmacología , Enfermedades de la Aorta/diagnóstico por imagen , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/metabolismo , Western Blotting , Medios de Contraste , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Modelos Animales de Enfermedad , Endotelio Vascular/diagnóstico por imagen , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Inhibidores Enzimáticos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microburbujas , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Adhesividad Plaquetaria/efectos de los fármacos , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Superóxidos/metabolismo , Factores de Tiempo , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
Life Sci Alliance ; 5(3)2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34903561

RESUMEN

Fms-like tyrosine kinase 3 (Flt3) is a regulator of hematopoietic progenitor cells and a target of tyrosine kinase inhibitors. Flt3-targeting tyrosine kinase inhibitors can have cardiovascular side effects. Flt3 and its ligand (Flt3L) are expressed in the heart, but little is known about their physiological functions. Here, we show that cardiac side population progenitor cells (SP-CPCs) from mice produce and are responsive to Flt3L. Compared with wild-type, flt3L-/- mice have less SP-CPCs with less contribution of CD45-CD34+ cells and lower expression of genes related to epithelial-to-mesenchymal transition, cardiovascular development and stem cell differentiation. Upon culturing, flt3L-/- SP-CPCs show increased proliferation and less vasculogenic commitment, whereas Akt phosphorylation is lower. Notably, proliferation and differentiation can be partially restored towards wild-type levels in the presence of alternative receptor tyrosine kinase-activating growth factors signaling through Akt. The lower vasculogenic potential of flt3L-/- SP-CPCs reflects in decreased microvascularisation and lower systolic function of flt3L-/- hearts. Thus, Flt3 regulates phenotype and function of murine SP-CPCs and contributes to cellular and molecular properties that are relevant for their cardiovasculogenic potential.


Asunto(s)
Células de Población Lateral/metabolismo , Células Madre/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Animales , Antígenos CD34 , Biomarcadores , Diferenciación Celular , Linaje de la Célula/genética , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Inmunofenotipificación , Ratones , Modelos Biológicos , Neovascularización Fisiológica , Células de Población Lateral/citología , Células Madre/citología
4.
Cardiovasc Res ; 118(14): 2973-2984, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849611

RESUMEN

AIMS: Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS: NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1ß-, and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to lipopolysaccharide (LPS) in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS: NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodelling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD.


Asunto(s)
Cardiopatías , Enfermedades Metabólicas , Humanos , Ratones , Masculino , Animales , Monocitos , Lipopolisacáridos , Células Endoteliales , Inflamación , Ratones Endogámicos C57BL , Ratones Noqueados
5.
J Vis Exp ; (143)2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30663645

RESUMEN

Cardiac progenitor cells (CPCs) may have therapeutic potential for cardiac regeneration after injury. In the adult mammalian heart, intrinsic CPCs are extremely scarce, but expanded CPCs could be useful for cell therapy. A prerequisite for their use is their ability to differentiate in a controlled manner into the various cardiac lineages using defined and efficient protocols. In addition, upon in vitro expansion, CPCs isolated from patients or preclinical disease models may offer fruitful research tools for the investigation of disease mechanisms. Current studies use different markers to identify CPCs. However, not all of them are expressed in humans, which limits the translational impact of some preclinical studies. Differentiation protocols that are applicable irrespective of the isolation technique and marker expression will allow for the standardized expansion and priming of CPCs for cell therapy purpose. Here we describe that the priming of CPCs under a low fetal bovine serum (FBS) concentration and low cell density conditions facilitates the endothelial differentiation of CPCs. Using two different subpopulations of mouse and rat CPCs, we show that laminin is a more suitable substrate than fibronectin for this purpose under the following protocol: after culturing for 2 - 3 days in medium including supplements that maintain multipotency and with 3.5% FBS, CPCs are seeded on laminin at <60% confluence and cultured in supplement-free medium with low concentrations of FBS (0.1%) for 20 - 24 hours before differentiation in endothelial differentiation medium. Because CPCs are a heterogeneous population, serum concentrations and incubation times may need to be adjusted depending on the properties of the respective CPC subpopulation. Considering this, the technique can be applied to other types of CPCs as well and provides a useful method to investigate the potential and mechanisms of differentiation and how they are affected by disease when using CPCs isolated from respective disease models.


Asunto(s)
Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Miocitos Cardíacos/citología
6.
Antioxid Redox Signal ; 9(9): 1439-48, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17627472

RESUMEN

Thioredoxin-1 (TRX) plays important roles in cellular signaling by controlling the redox state of cysteine residues in target proteins. TRX is released in response to oxidative stress and shows various biologic functions from the extracellular environment. However, the mechanism by which extracellular TRX transduces the signal into the cells remains unclear. Here we report that the cysteine modification at the active site of TRX promotes the internalization of TRX into the cells. TRX-C35S, in which the cysteine at residue 35 of the active site was replaced with serine, was internalized more effectively than wild-type TRX in human T-cell leukemia virus-transformed T cells. TRX-C35S bound rapidly to the cell surface and was internalized into the cells dependent on lipid rafts in the plasma membrane. This process was inhibited by wild-type TRX, reducing reagents such as dithiothreitol, and methyl-beta-cyclodextrin, which disrupts lipid rafts. Moreover, the internalized TRX-C35S binds to endogenous TRX, resulting in the generation of intracellular reactive oxygen species (ROS) and enhanced cis-diamine-dichloroplatinum (II) (CDDP)-induced apoptosis via a ROS-mediated pathway involving apoptosis signal-regulating kinase-1 (ASK-1) activation. These findings suggest that the cysteine at the active site of TRX plays a key role in the internalization and signal transduction of extracellular TRX into the cells.


Asunto(s)
Microdominios de Membrana/fisiología , Tiorredoxinas/metabolismo , Sustitución de Aminoácidos , Apoptosis , Cisteína , Humanos , Células Jurkat , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética
7.
J Am Heart Assoc ; 6(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29066438

RESUMEN

BACKGROUND: Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. METHODS AND RESULTS: Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 (Plk2). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. CONCLUSIONS: Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Linaje de la Célula , Proliferación Celular , Células Progenitoras Endoteliales/enzimología , Miocitos Cardíacos/enzimología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas Reguladoras de la Apoptosis/genética , Adhesión Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Células Cultivadas , Técnicas de Cocultivo , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Laminina/metabolismo , Ratones Transgénicos , Neovascularización Fisiológica , Fenotipo , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Señalizadoras YAP
8.
Cardiovasc Res ; 93(3): 454-62, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22198504

RESUMEN

AIMS: The highly expressed cell adhesion receptor CD29 (ß(1)-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-induced survival signalling in cardiomyocytes. METHODS AND RESULTS: In neonatal rat ventricular myocytes, CD29 activation induced intracellular ROS formation (oxidative burst) as assessed by flow cytometry using the redox-sensitive fluorescent dye dichlorodihydrofluorescein diacetate. This burst was inhibited by apocynin and diphenylene iodonium. Further, activation of CD29 enhanced NOX activity (lucigenin-enhanced chemiluminescence) and activated the MEK/ERK and PI3K/Akt survival pathways. CD29 also induced phosphorylation of the inhibitory Ser9 on the pro-apoptotic kinase glycogen synthase kinase-3ß in a PI3K/Akt- and MEK-dependent manner, and improved cardiomyocyte viability under conditions of oxidative stress. The ROS scavenger MnTMPyP or adenoviral co-overexpression of the antioxidant enzymes superoxide dismutase and catalase inhibited CD29-induced pro-survival signalling. Further, CD29-induced protective pathways were lost in mouse cardiomyocytes deficient for NOX2 or functional p47(phox), a regulatory subunit of NOX. CONCLUSION: p47(phox)-dependent, NOX2-derived ROS are mandatory for CD29-induced pro-survival signalling in cardiomyocytes. These findings go in line with a growing body of evidence suggesting that ROS can be beneficial to the cell and support a crucial role for NOX2-derived ROS in cell survival in the heart.


Asunto(s)
Integrina beta1/metabolismo , Glicoproteínas de Membrana/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/enzimología , NADPH Oxidasas/metabolismo , Transducción de Señal/fisiología , Acetofenonas/farmacología , Animales , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Integrina beta1/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Miocitos Cardíacos/efectos de los fármacos , NADPH Oxidasa 2 , NADPH Oxidasas/genética , Compuestos Onio/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Antioxid Redox Signal ; 11(12): 2957-71, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19622016

RESUMEN

Thioredoxin (TRX) is a key component of redox regulation and has been indicated to play an essential role in cell survival and growth. Here, we investigated the molecular mechanism of TRX in the regulation of cell survival and growth by using RNA interference (RNAi) in A549 lung cancer and MCF7 breast cancer cells. TRX knockdown did not significantly increase the basal level of cell death without exposure to stress, but CDDP-induced cell death was enhanced. Meanwhile, TRX knockdown resulted in significant cell-cycle arrest at the G(1) phase. Cyclin D1 expression was reduced by TRX knockdown at the protein and mRNA levels. TRX knockdown caused suppression of activation of the cyclin D1 promoter through elements including AP-1. TRX knockdown also reduced the levels of phosphorylated ERK1/2 and the nuclear translocation of ERK 1/2 induced by EGF. These results suggest that TRX is an important regulator of the cell cycle in the G(1) phase via cyclin D1 transcription and the ERK/AP-1 signaling pathways.


Asunto(s)
Ciclo Celular/fisiología , Ciclina D1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Tiorredoxinas/fisiología , Secuencia de Bases , Western Blotting , Línea Celular Tumoral , Cisplatino/farmacología , Cartilla de ADN , Técnicas de Silenciamiento del Gen , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiorredoxinas/genética , Factor de Transcripción AP-1/metabolismo
10.
Antioxid Redox Signal ; 11(10): 2595-605, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19601712

RESUMEN

Thioredoxin-1 (TRX) is a small (14 kDa) multifunctional protein with the redox-active site Cys-Gly-Pro-Cys. Macrophage migration inhibitory factor (MIF) is a 12 kDa cytokine belonging to the TRX family. Historically, when we purified TRX from the supernatant of ATL-2 cells, a 12 kDa protein was identified along with TRX, which was later proved to be MIF. Here, we show that TRX and MIF form a complex in the cell and the culture supernatant of ATL-2 cells. Using a BIAcore assay, we confirmed that TRX has a specific affinity with MIF. We also found that extracellular MIF was more effectively internalized into the ATL-2 cells expressing TRX on the cell surface, than the Jurkat T cells which do not express surface TRX. Moreover, anti-TRX antibody blocked the MIF internalization, suggesting that the cell surface TRX is involved in MIF internalization into the cells. Furthermore, anti-TRX antibody inhibited MIF-mediated enhancement of TNF-alpha production from macrophage RAW264.7 cells. These results suggest that the cell surface TRX serves as one of the MIF binding molecules or MIF receptor component and inhibits MIF-mediated inflammatory signals.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos/metabolismo , Transducción de Señal/fisiología , Tiorredoxinas/metabolismo , Animales , Línea Celular , Endocitosis/fisiología , Humanos , Lipopolisacáridos/farmacología , Factores Inhibidores de la Migración de Macrófagos/genética , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Oxidación-Reducción , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA