Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 243(4): 1347-1360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38402560

RESUMEN

Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.


Asunto(s)
Cloroplastos , Diatomeas , Luz , Diatomeas/ultraestructura , Diatomeas/fisiología , Diatomeas/crecimiento & desarrollo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Temperatura , Organismos Acuáticos , Fotosíntesis
2.
Sci Total Environ ; 914: 169296, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38104811

RESUMEN

Methane production by livestock is a substantial component of greenhouse gas emissions worldwide. The marine red algae, Asparagopsis taxiformis, has been identified as a possible supplement in livestock feeds due to its potent inhibition of methane production but currently is unable to be produced at scale. Finding additional taxa that inhibit methane production is therefore desirable. Here we provide foundational evidence of methanogenesis-inhibiting properties in Australian freshwater plants and algae, reviewing candidate species and testing species' chemical composition and efficacy in vitro. Candidate plant species and naturally-occurring algal mixes were collected and assessed for ability to reduce methane in batch testing and characterised for biochemical composition, lipids and fatty acids, minerals and DNA. We identified three algal mixes and one plant (Montia australasica) with potential to reduce methane yield in in vitro batch assay trials. All three algal mixes contained Spirogyra, although additional testing would be needed to confirm this alga was responsible for the observed activity. For the two samples that underwent multiple dose testing, Algal mix 1 (predominantly Spirogyra maxima) and M. australasica, there seems to be an optimum dose but sources, harvesting and storage conditions potentially determine their methanogenesis-inhibiting activity. Based on their compositions, fatty acids are likely to be acting to reduce methane in Algal mix 1 while M. australasica likely contains substantial amounts of the flavonoids apigenin and kaempferol, which are associated with methane reduction. Based on their mineral composition, the samples tested would be safe for livestock consumption at an inclusion rate of 20%. Thus, we identified multiple Australian species that have potential to be used as a feed supplement to reduce methane yield in livestock which may be suitable for individual farmers to grow and feed, reducing complexities of supply associated with marine alternatives and suggesting avenues for investigation for similar species elsewhere.


Asunto(s)
Ganado , Metano , Rhodophyta , Animales , Australia , Rumiantes , Plantas , Polvo , Ácidos Grasos
3.
Nat Commun ; 15(1): 658, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291022

RESUMEN

In coastal seas, the role of atmospheric deposition and river runoff in dissolved organic phosphorus (DOP) utilization is not well understood. Here, we address this knowledge gap by combining microcosm experiments with a global approach considering the relationship between the activity of alkaline phosphatases and changes in phytoplankton biomass in relation to the concentration of dissolved inorganic phosphorus (DIP). Our results suggest that the addition of aerosols and riverine water stimulate the biological utilization of DOP in coastal seas primarily by depleting DIP due to increasing nitrogen concentrations, which enhances phytoplankton growth. This "Anthropogenic Nitrogen Pump" was therefore identified to make DOP an important source of phosphorus for phytoplankton in coastal seas but only when the ratio of chlorophyll a to DIP [Log10 (Chl a / DIP)] is larger than 1.20. Our study therefore suggests that anthropogenic nitrogen input might contribute to the phosphorus cycle in coastal seas.

4.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38136186

RESUMEN

Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA