RESUMEN
The absence of non-invasive tests that can monitor the status of the brain is a major obstacle for psychiatric care. In order to address this need, we assessed the feasibility of using tissue-specific gene expression to determine the origin of extracellular vesicle (EV) mRNAs in peripheral blood. Using the placenta as a model, we discovered that 26 messenger RNAs that are specifically expressed in the placenta are present in EVs circulating in maternal blood. Twenty-three of these transcripts were either exclusively or highly expressed in maternal blood during pregnancy only and not in the postpartum period, verifying the feasibility of using tissue-specific gene expression to infer the tissue of origin for EV mRNAs. Using the same bioinformatic approach, which provides better specificity than isolating L1 cell-adhesion molecule containing EVs, we discovered that 181 mRNAs that are specifically expressed in the female brain are also present in EVs circulating in maternal blood. Gene set enrichment analysis revealed that these transcripts, which are involved in synaptic functions and myelination, are enriched for genes implicated in mood disorders, schizophrenia, and substance use disorders. The EV mRNA levels of 13 of these female brain-specific transcripts are associated with postpartum depression (adjusted p-vals = 3 × 10-5 to 0.08), raising the possibility that they can be used to infer the state of the brain. In order to determine the extent to which EV mRNAs reflect transcription in the brain, we compared mRNAs isolated from cells and EVs in an iPSC-derived brain microphysiological system differentiated for 3 and 9 weeks. We discovered that, although cellular and extracellular mRNA levels are not identical, they do correlate, and it is possible to extrapolate cellular RNA expression changes in the brain via EV mRNA levels. Our findings bring EV mRNAs to the forefront of peripheral biomarker development efforts in psychiatric diseases by demonstrating the feasibility of inferring transcriptional changes in the brain via blood EV mRNA levels.
Asunto(s)
Biomarcadores , Encéfalo , Vesículas Extracelulares , ARN Mensajero , Femenino , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , ARN Mensajero/metabolismo , Encéfalo/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Embarazo , Placenta/metabolismo , Expresión Génica/genética , Adulto , Depresión Posparto/genética , Depresión Posparto/metabolismoRESUMEN
BACKGROUND/AIMS: High Monomeric Polyphenols Berries Extract (HMPBE) is a formula highly rich in polyphenols clinically proven to enhance learning and memory. It is currently used to enhances cognitive performance including accuracy, working memory and concentration. METHODS: Here, we investigated for the first time the beneficial effects of HMPBE in a mouse model of acute and chronic traumatic brain injury (TBI). RESULTS: HMPBE, at the dose of 15 mg/kg was able to reduce histological alteration as well as inflammation and lipid peroxidation. HMPBE ameliorate TBI by improving Nrf-2 pathway, reducing Nf-kb nuclear translocation and apoptosis, and ameliorating behavioral alteration such as anxiety and depression. Moreover, in the chronic model of TBI, HMPBE administration restored the decline of Tyrosine Hydroxylase (TH) and dopamine transporter (DAT) and the accumulation of a-synuclein into the midbrain region. This finding correlates the beneficial effect of HMPBE administration with the onset of parkinsonism related to traumatic brain damage. CONCLUSION: The data may open a window for developing new support strategies to limit the neuroinflammation event of acute and chronic TBI.
Asunto(s)
Frutas , Factor 2 Relacionado con NF-E2 , FN-kappa B , Extractos Vegetales , Polifenoles , Proteína X Asociada a bcl-2 , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Polifenoles/farmacología , Polifenoles/química , Polifenoles/uso terapéutico , Ratones , FN-kappa B/metabolismo , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Frutas/química , Proteína X Asociada a bcl-2/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Tirosina 3-Monooxigenasa/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Apoptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/patología , Peroxidación de Lípido/efectos de los fármacosRESUMEN
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Asunto(s)
Sordera , Neurobiología , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Cóclea , Envejecimiento/fisiologíaRESUMEN
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A valid approach to protect against the disease would be to replenish the endogenous antioxidants; thus, we investigated the protective mechanisms of the S-acetyl-glutathione (SAG), a glutathione (GSH) prodrug. Preliminary in vitro analyses were conducted on primary hepatic cells. SAG pre-treatment significantly protected against cytotoxicity induced by CCl4. Additionally, CCl4 induced a marked increase in AST and ALT levels, whereas SAG significantly reduced these levels, reaching values found in the control group. For the in vivo analyses, mice were administered twice a week with eight consecutive intraperitoneal injections of 1 mL/kg CCl4 (diluted at 1:10 in olive oil) to induce oxidative imbalance and liver inflammation. SAG (30 mg/kg) was administered orally for 8 weeks. SAG significantly restored SOD activity, GSH levels and GPx activity, while it strongly reduced GSSG levels, lipid peroxidation and H2O2 and ROS levels in the liver. Additionally, CCl4 induced a decrease in anti-oxidants, including Nrf2, HO-1 and NQO-1, which were restored by treatment with SAG. The increased oxidative stress characteristic on liver disfunction causes the impairment of mitophagy and accumulation of dysfunctional and damaged mitochondria. Our results showed the protective effect of SAG administration in restoring mitophagy, as shown by the increased PINK1 and Parkin expressions in livers exposed to CCl4 intoxication. Thus, the SAG administration showed anti-inflammatory effects decreasing pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-1ß in both serum and liver, and suppressing the TLR4/NFkB pathway. SAG attenuated reduced fibrosis, collagen deposition, hepatocellular damage and organ dysfunction. In conclusion, our results suggest that SAG administration protects the liver from CCl4 intoxication by restoring the oxidative balance, ameliorating the impairment of mitophagy and leading to reduced inflammation.
Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Antioxidantes/metabolismo , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/patología , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones , Insuficiencia Multiorgánica/tratamiento farmacológico , Estrés OxidativoRESUMEN
Meniere's disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection.
Asunto(s)
Agaricales/química , Polisacáridos Fúngicos/administración & dosificación , Enfermedad de Meniere , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Adulto , Femenino , Polisacáridos Fúngicos/química , Humanos , Masculino , Enfermedad de Meniere/sangre , Enfermedad de Meniere/tratamiento farmacológico , Persona de Mediana Edad , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/químicaRESUMEN
Age-related changes in the brain reflect a dynamic interaction of genetic, epigenetic, phenotypic, and environmental factors that can be temporally restricted or more longitudinally present throughout the lifespan. Fundamental to these mechanisms is the capacity for physiological adaptation through modulation of diverse molecular and biochemical signaling occurring from the intracellular to the network-systemic level throughout the brain. A number of agents that affect the onset and progression of Parkinson's disease (PD)-like effects in experimental models exhibit temporal features, and mechanisms of hormetic dose responses. These findings have particular significance since the hormetic dose response describes the amplitude and range of potential therapeutic effects, thereby affecting the design and conduct of studies of interventions against PD (and other neurodegenerative diseases), and may also be important to a broader consideration of hormetic processes in resilient adaptive responses that might afford protection against the onset and/or progression of PD and related disorders.
Asunto(s)
Enfermedad de Parkinson/prevención & control , Enfermedad de Parkinson/terapia , Adaptación Fisiológica , Factores de Edad , Animales , Modelos Animales de Enfermedad , Hormesis , HumanosRESUMEN
BACKGROUND/AIMS: In rodents, carnosine treatment improves diabetic nephropathy, whereas little is known about the role and function of anserine, the methylated form of carnosine. METHODS: Antioxidant activity was measured by oxygen radical absorbance capacity and oxygen stress response in human renal tubular cells (HK-2) by RT-PCR and Western-Immunoblotting. In wildtype (WT) and diabetic mice (db/db), the effect of short-term anserine treatment on blood glucose, proteinuria and vascular permeability was measured. RESULTS: Anserine has a higher antioxidant capacity compared to carnosine (p < 0.001). In tubular cells (HK-2) stressed with 25 mM glucose or 20â»100 µM hydrogen peroxide, anserine but not carnosine, increased intracellular heat shock protein (Hsp70) mRNA and protein levels. In HK-2 cells stressed with glucose, co-incubation with anserine also increased hemeoxygenase (HO-1) protein and reduced total protein carbonylation, but had no effect on cellular sirtuin-1 and thioredoxin protein concentrations. Three intravenous anserine injections every 48 h in 12-week-old db/db mice, improved blood glucose by one fifth, vascular permeability by one third, and halved proteinuria (all p < 0.05). CONCLUSION: Anserine is a potent antioxidant and activates the intracellular Hsp70/HO-1 defense system under oxidative and glycative stress. Short-term anserine treatment in diabetic mice improves glucose homeostasis and nephropathy.
Asunto(s)
Anserina/uso terapéutico , Antioxidantes/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Peróxido de Hidrógeno/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , ProteinuriaRESUMEN
Significance: The stria vascularis, located in the inner ear, consists of three layers, one of which is the blood-labyrinth barrier (BLB). It is formed by endothelial cells, sealed together to prevent the passage of toxic substances from the blood to the inner ear, by pericytes and perivascular-resident macrophage-like melanocyte. Recent Advances: There are various causes that lead to hearing loss, and among these are noise-induced and autoimmune hearing loss, ear disorders related to ototoxic medication, Ménière's disease, and age-related hearing loss. For all of these, major therapeutic interventions include drug-loaded nanoparticles, via intratympanic or intracochlear delivery. Critical Issues: Since many pathologies associated with hearing loss are characterized by a weakening of the BLB, in this review, the molecular mechanisms underlying the response to damage of BLB cellular components have been discussed. In addition, insight into the role of hormetic nutrients against hearing loss pathology is proposed. Future Directions: BLB cellular components of neurovascular cochlear unit play important physiological roles, owing to their impermeable function against all ototoxic substances that can induce damage. Studies are needed to investigate the cross talk occurring between these cellular components to exploit their possible role as novel targets for therapeutic interventions that may unravel future path based on the use of hormetic nutrients. Antioxid. Redox Signal. 40, 542-563.
Asunto(s)
Oído Interno , Pérdida Auditiva , Humanos , Células Endoteliales , Cóclea , PericitosRESUMEN
Parkinson's disease (PD), characterized by tremor, slowness of movement, stiffness, and poor balance, is due to a significant loss of dopaminergic neurons in the substantia nigra pars compacta and dopaminergic nerve terminals in the striatum with deficit of dopamine. To date the mechanisms sustaining PD pathogenesis are under investigation; however, a solid body of experimental evidence involves neuroinflammation, mitochondrial dysfunction, oxidative stress, and apoptotic cell death as the crucial factors operating in the pathogenesis of PD. Nutrition is known to modulate neuroinflammatory processes implicated in the pathogenesis and progression of this neurodegenerative disorder. Consistent with this notion, the Burseraceae family, which includes the genera Boswellia and Commiphora, are attracting emerging interest in the treatment of a wide range of pathological conditions, including neuroinflammation and cognitive decline. Bioactive components present in these species have been shown to improve cognitive function and to protect neurons from degeneration in in vitro, animal, as well as clinical research. These effects are mediated through the anti-inflammatory, antiamyloidogenic, anti-apoptotic, and antioxidative properties of bioactive components. Although many studies have exploited possible therapeutic approaches, data from human studies are lacking and their neuroprotective potential makes them a promising option for preventing and treating major neurodegenerative disorders.
RESUMEN
Neurodegenerative diseases have multifactorial pathogenesis, mainly involving neuroinflammatory processes. Finding drugs able to treat these diseases, expecially because for most of these diseases there are no effective drugs, and the current drugs cause undesired side effects, represent a crucial point. Most in vivo and in vitro studies have been concentrated on various aspects related to neurons (e.g. neuroprotection), however, there has not been focus on the prevention of early stages involving glial cell activation and neuroinflammation. Recently, it has been demonstrated that nutritional phytochemicals including polyphenols, the main active constituents of the Mediterranean diet, maintain redox balance and neuroprotection through the activation of hormetic vitagene pathway. Recent lipidomics data from our laboratory indicate mushrooms as strong nutritional neuronutrients with strongly activity against neuroinflammation in Meniere' diseaseas, a model of cochleovestibular neural degeneration, as well as in animal model of traumatic brain injury, or rotenone induced parkinson's disease. Moreover, Hidrox®, an aqueous extract of olive containing hydroxytyrosol, and Boswellia, acting as Nrf2 activators, promote resilience by enhancing the redox potential, and thus, regulate through hormetic mechanisms, cellular stress response mechanisms., Thus, modulation of cellular stress pathways, in particular vitagenes system, may be an innovative approach for therapeutic intervention in neurodegenerative disorders.
Asunto(s)
Hormesis , Humanos , Animales , Envejecimiento Saludable/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológicoRESUMEN
Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.
RESUMEN
Autism spectrum disorder (ASD) includes a heterogeneous group of complex neurodevel opmental disorders characterized by atypical behaviors with two core pathological manifestations: deficits in social interaction/communication and repetitive behaviors, which are associated with disturbed redox homeostasis. Modulation of cellular resilience mechanisms induced by low levels of stressors represents a novel approach for the development of therapeutic strategies, and in this context, neuroprotective effects of a wide range of polyphenol compounds have been demonstrated in several in vitro and in vivo studies and thoroughly reviewed by [2, 3]. Mushrooms have been used in traditional medicine for many years and have been associated with a long list of therapeutic properties, including antitumor, immunomodulatory, antioxidant, antiviral, antibacterial, and hepatoprotective effects [4]. Our recent studies have strikingly indicated the presence of polyphenols in nutritional mushrooms and demonstrated their protective effects in different models of neurodegenerative disorders in humans and rats [5, 6]. Although their therapeutic effects are exerted through multiple mechanisms, increasing attention is focusing on their capacity to induce endogenous defense systems by modulating cellular signaling processes, such as nuclear factor erythroid 2 related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways. Here we discuss the protective role of hormesis and its modulation by hormetic nutrients in ASD.
RESUMEN
Anserine and carnosine have nephroprotective actions; hydrogen sulfide (H2S) protects from ischemic tissue damage, and the underlying mechanisms are debated. In view of their common interaction with HSP70, we studied possible interactions of both dipeptides with H2S. H2S formation was measured in human proximal tubular epithelial cells (HK-2); three endothelial cell lines (HUVEC, HUAEC, MCEC); and in renal murine tissue of wild-type (WT), carnosinase-1 knockout (Cndp1-KO) and Hsp70-KO mice. Diabetes was induced by streptozocin. Incubation with carnosine increased H2S synthesis capacity in tubular cells, as well as with anserine in all three endothelial cell lines. H2S dose-dependently reduced anserine/carnosine degradation rate by serum and recombinant carnosinase-1 (CN1). Endothelial Hsp70-KO reduced H2S formation and abolished the stimulation by anserine and could be restored by Hsp70 transfection. In female Hsp70-KO mice, kidney H2S formation was halved. In Cndp1-KO mice, kidney anserine concentrations were several-fold and sex-specifically increased. Kidney H2S formation capacity was increased 2-3-fold in female mice and correlated with anserine and carnosine concentrations. In diabetic Cndp1-KO mice, renal anserine and carnosine concentrations as well as H2S formation capacity were markedly reduced compared to non-diabetic Cndp1-KO littermates. Anserine and carnosine induce H2S formation in a cell-type and Hsp70-specific manner within a positive feedback loop with CN1.
RESUMEN
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Encéfalo , Monóxido de Carbono , Gases , Óxido Nítrico/fisiologíaRESUMEN
The scientific community, recently, has focused notable attention on the chemopreventive and therapeutic effects of dietary polyphenols for human health. Emerging evidence demonstrates that polyphenols, flavonoids and vitamins counteract and neutralize genetic and environmental stressors, particularly oxidative stress and inflammatory process closely connected to cancer initiation, promotion and progression. Interestingly, polyphenols can exert antioxidant or pro-oxidant cytotoxic effects depending on their endogenous concentration. Notably, polyphenols at high dose act as pro-oxidants in a wide type of cancer cells by inhibiting Nrf2 pathway and the expression of antioxidant vitagenes, such as NAD(P)H-quinone oxidoreductase (NQO1), glutathione transferase (GT), GPx, heme oxygenase-1 (HO-1), sirtuin-1 (Sirt1) and thioredoxin (Trx) system which play an essential role in the metabolism of reactive oxygen species (ROS), detoxification of xenobiotics and inhibition of cancer progression, by inducing apoptosis and cell cycle arrest according to the hormesis approach. Importantly, mutagenesis of Nrf2 pathway can exacerbate its "dark side" role, representing a crucial event in the initiation stage of carcinogenesis. Herein, we review the hormetic effects of polyphenols and nanoincapsulated-polyphenols in chemoprevention and treatment of brain tumors via activation or inhibition of Nrf2/vitagenes to suppress carcinogenesis in the early stages, and thus inhibit its progression. Lastly, we discuss innovative preclinical approaches through mini-brain tumor organoids to study human carcinogenesis, from basic cancer research to clinical practice, as promising tools to recapitulate the arrangement of structural neuronal tissues and biological functions of the human brain, as well as test drug toxicity and drive personalized and precision medicine in brain cancer.
Asunto(s)
Organoides , Polifenoles , Antioxidantes/farmacología , Encéfalo/metabolismo , Quimioprevención , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Organoides/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Polifenoles/farmacología , TecnologíaRESUMEN
Most chronic illnesses are caused by the biological reaction to an injury, rather than the initial injury or the injurious agent itselves as in neurodegeneration. With respect to this, notable attention is emerging on the therapeutic effects of dietary polyphenols for human health, able to counteract and neutralize oxidative stress and inflammatory processes involved in the etiopathogenesis of major neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. The acquired concept that cellular stress at low doses induces neuroprotective responses against degenerative processes is a frontier area of the neurobiological research focusing on the development of novel preventive and therapeutic interventions for neurodegenerative disorders. Notably, basal levels of prooxidant species are essential to promote adaptive redox cellular responses including vitagenes, tightly correlated to cell survival against age-related diseases. In this paper we discuss the concept of cellular stress response and hormesis and its applications to the field of neuroprotection and the potential therapeutic support provided by olive polyphenols, in particular hydroxytyrosol (HT)-rich aqueous olive pulp extract (Hidrox), as a pivotal activator of Nrf2 pathway and related vitagenes, and inhibitor of Keap1-Nrf2 interaction.Olive polyphenols are considered potential pharmacological modulators of neuroinflammation by upregulation of the Keap1/Nfr2/ARE pathway thus providing a strong rationale for treating neurodegenerative disorders.
Asunto(s)
Productos Biológicos , Enfermedades Neurodegenerativas , Olea , Polifenoles , Productos Biológicos/uso terapéutico , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Olea/metabolismo , Estrés Oxidativo , Polifenoles/farmacología , Polifenoles/uso terapéuticoRESUMEN
BACKGROUND: A growing body of research suggests that oxidative stress and neuroinflammation are early pathogenic features of neurodegenerative disorders. In recent years, the vitagene system has emerged as a potential target, as it has been shown to have a high neuroprotective power. Therefore, the discovery of molecules capable of activating this system may represent a new therapeutic target to limit the deleterious consequences induced by oxidative stress and neuroinflammation, such as neurodegeneration. Lipoxins are derived from arachidonic acid, and their role in the resolution of systemic inflammation is well established; however, they have become increasingly involved in the regulation of neuroinflammatory and neurodegenerative processes. Our study aimed at activating the NF-E2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) redox system and increasing lipoxin A4 for the modulation of antioxidant stress and neuroinflammation through the action of two fungi in a rotenone-induced Parkinson's model. METHODS: During the experiment, mice received Hericium erinaceus, Coriolus versicolor or a combination of the two (200 mg/kg, orally) concomitantly with rotenone (5 mg/kg, orally) for 28 days. RESULTS: The results obtained highlighted the ability of these two fungi and, in particular, their ability through their association to act on neuroinflammation through the nuclear factor-kB pathway and on oxidative stress through the Nrf2 pathway. This prevented dopaminergic neurons from undergoing apoptosis and prevented the alteration of typical Parkinson's disease (PD) markers and α-synuclein accumulation. The action of Hericium erinaceus and Coriolus versicolor was also able to limit the motor and non-motor alterations characteristic of PD. CONCLUSIONS: Since these two mushrooms are subject to fewer regulations than traditional drugs, they could represent a promising nutraceutical choice for preventing PD.
RESUMEN
Inflammatory bowel diseases (IBDs) are disorders characterized by chronic inflammation of the intestinal tract. The focus of the present study was to examine the effect of the fungus Coriolus versicolor (CV), underlining its correlation with Toll-like receptors 4 (TLR4) and nuclear factor erythroid 2-related factor 2 (Nrf2); we aim to evaluate its anti-inflammatory and antioxidant effect in mice exposed to experimental colitis. The model was induced in mice by colon instillation of dinitrobenzenesulfonic acid (DNBS), CV was administered orally (200 mg per kg) daily for 4 days. On day 4, the animals were killed, and the tissues collected for histological, biochemical, and molecular analyses. Four days after DNBS administration, CC motif chemokine ligand 2 (CCL2), prostaglandin E2 (PGE2), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) production increased in association with damage to the colon. Neutrophil infiltration, as assessed by myeloperoxidase (MPO) activity, in the mucosa was associated with overexpression of P-selectin and intercellular adhesion molecule 1 (ICAM1). Immunohistochemistry for nitrotyrosine and poly-(ADP-Ribose)-polymerase (PARP) showed evident stain in the inflamed colon. Treatment with CV significantly reduced the appearance of colon changes and weight loss. These effects were associated with a remarkable ability of CV to reduce the expression of TLR4 and modulate the pathway of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). This improved the colon architecture, reduced MPO activity, the release of proinflammatory cytokines, the presence of nitrotyrosine, and the hyperactivation of PARP, as well as the up-regulation of P-selectin and ICAM1. Furthermore, we studied the action of CV on the Nrf2/HO-1 pathway, which is important for maintaining redox balance, demonstrating that CV by significantly increasing both enzymes is able to counteract the oxidative stress induced by DNBS. Taken together, our results clearly show that this natural compound can be considered as a possible dietary supplement against colitis.
RESUMEN
BACKGROUND: Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G×E) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G×E) interactions. OBJECTIVES: In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS: This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS: Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (CHD8+/-) BrainSpheres compared with CHD8+/+ ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G×E) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α-hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION: This study pioneered (G×E) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD8+/- BrainSpheres to chemical insult establishes a possibly broader role of (G×E) interaction in ASD. https://doi.org/10.1289/EHP8580.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Cloropirifos , Células Madre Pluripotentes Inducidas , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/genética , Trastorno Autístico/etiología , Cloropirifos/toxicidad , Proteínas de Unión al ADN/genética , Interacción Gen-Ambiente , Humanos , Factores de TranscripciónRESUMEN
Carnosine improves diabetic complications, including diabetic nephropathy, in in vivo models. To further understand the underlying mechanism of nephroprotection, we studied the effect of carnosine under glucose-induced stress on cellular stress response proteins in murine immortalized podocytes, essential for glomerular function. High-glucose stress initiated stress response by increasing intracellular heat shock protein 70 (Hsp70), sirtuin-1 (Sirt-1), thioredoxin (Trx), glutamate-cysteine ligase (gamma-glutamyl cysteine synthetase; γ-GCS) and heme oxygenase-1 (HO-1) in podocytes by 30-50% compared to untreated cells. Carnosine (1 mM) also induced a corresponding upregulation of these intracellular stress markers, which was even more prominent compared to glucose for Hsp70 (21%), γ-GCS and HO-1 (13% and 20%, respectively; all p < 0.001). Co-incubation of carnosine (1 mM) and glucose (25 mM) induced further upregulation of Hsp70 (84%), Sirt-1 (52%), Trx (35%), γ-GCS (90%) and HO-1 (73%) concentrations compared to untreated cells (all p < 0.001). The glucose-induced increase in 4-hydroxy-trans-2-nonenal (HNE) and protein carbonylation was reduced dose-dependently by carnosine by more than 50% (p < 0.001). Although podocytes tolerated high carnosine concentrations (10 mM), high carnosine levels only slightly increased Trx and γ-GCS (10% and 19%, respectively, compared to controls; p < 0.001), but not Hsp70, Sirt-1 and HO-1 proteins (p not significant), and did not modify the glucose-induced oxidative stress response. In podocytes, carnosine induced cellular stress tolerance and resilience pathways and was highly effective in reducing high-glucose-induced glycative and lipoperoxidative stress. Carnosine in moderate concentrations exerted a direct podocyte molecular protective action.