Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 82: 1-24, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23472605

RESUMEN

Chris Raetz passed away on August 16, 2011, still at the height of his productive years. His seminal contributions to biomedical research were in the genetics, biochemistry, and structural biology of phospholipid and lipid A biosynthesis in Escherichia coli and other gram-negative bacteria. He defined the catalytic properties and structures of many of the enzymes responsible for the "Raetz pathway for lipid A biosynthesis." His deep understanding of chemistry, coupled with knowledge of medicine, biochemistry, genetics, and structural biology, formed the underpinnings for his contributions to the lipid field. He displayed an intense passion for science and a broad interest that came from a strong commitment to curiosity-driven research, a commitment he imparted to his mentees and colleagues. What follows is a testament to both Chris's science and humanity from his friends and colleagues.


Asunto(s)
Investigación Biomédica/historia , Biología Molecular/historia , Anciano , Alemania , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Estados Unidos
2.
Cell ; 145(2): 212-23, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21496642

RESUMEN

Human exonuclease 1 (hExo1) plays important roles in DNA repair and recombination processes that maintain genomic integrity. It is a member of the 5' structure-specific nuclease family of exonucleases and endonucleases that includes FEN-1, XPG, and GEN1. We present structures of hExo1 in complex with a DNA substrate, followed by mutagenesis studies, and propose a common mechanism by which this nuclease family recognizes and processes diverse DNA structures. hExo1 induces a sharp bend in the DNA at nicks or gaps. Frayed 5' ends of nicked duplexes resemble flap junctions, unifying the mechanisms of endo- and exonucleolytic processing. Conformational control of a mobile region in the catalytic site suggests a mechanism for allosteric regulation by binding to protein partners. The relative arrangement of substrate binding sites in these enzymes provides an elegant solution to a complex geometrical puzzle of substrate recognition and processing.


Asunto(s)
Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Secuencia de Aminoácidos , Endonucleasas/genética , Endonucleasas de ADN Solapado/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia
3.
Proc Natl Acad Sci U S A ; 117(7): 3535-3542, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015124

RESUMEN

MutL proteins are ubiquitous and play important roles in DNA metabolism. MutLγ (MLH1-MLH3 heterodimer) is a poorly understood member of the eukaryotic family of MutL proteins that has been implicated in triplet repeat expansion, but its action in this deleterious process has remained unknown. In humans, triplet repeat expansion is the molecular basis for ∼40 neurological disorders. In addition to MutLγ, triplet repeat expansion involves the mismatch recognition factor MutSß (MSH2-MSH3 heterodimer). We show here that human MutLγ is an endonuclease that nicks DNA. Strikingly, incision of covalently closed, relaxed loop-containing DNA by human MutLγ is promoted by MutSß and targeted to the strand opposite the loop. The resulting strand break licenses downstream events that lead to a DNA expansion event in human cell extracts. Our data imply that the mammalian MutLγ is a unique endonuclease that can initiate triplet repeat DNA expansions.


Asunto(s)
Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Reparación de la Incompatibilidad de ADN , Dimerización , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Expansión de Repetición de Trinucleótido
4.
Proc Natl Acad Sci U S A ; 115(28): 7314-7319, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29941579

RESUMEN

MutLα (MLH1-PMS2 heterodimer), which acts as a strand-directed endonuclease during the initiation of eukaryotic mismatch repair, has been postulated to function as a zinc-dependent enzyme [Kosinski J, Plotz G, Guarné A, Bujnicki JM, Friedhoff P (2008) J Mol Biol 382:610-627]. We show that human MutLα copurifies with two bound zinc ions, at least one of which resides within the endonuclease active site, and that bound zinc is required for endonuclease function. Mutagenic action of the carcinogen cadmium, a known inhibitor of zinc-dependent enzymes, is largely due to selective inhibition of mismatch repair [Jin YH, et al. (2003) Nat Genet 34:326-329]. We show that cadmium is a potent inhibitor (apparent Ki ∼ 200 nM) of MutLα endonuclease and that cadmium inhibition is reversed by zinc. We also show that inhibition of mismatch repair in cadmium-treated nuclear extract is significantly reversed by exogenous MutLα but not by MutSα (MSH2-MSH6 heterodimer) and that MutLα reversal depends on integrity of the endonuclease active site. Exogenous MutLα also partially rescues the mismatch repair defect in nuclear extract prepared from cells exposed to cadmium. These findings indicate that targeted inhibition of MutLα endonuclease contributes to cadmium inhibition of mismatch repair. This effect may play a role in the mechanism of cadmium carcinogenesis.


Asunto(s)
Cadmio/química , Carcinógenos/química , Reparación de la Incompatibilidad de ADN , Inhibidores Enzimáticos/química , Proteínas MutL/química , Mutágenos/química , Multimerización de Proteína , Humanos , Proteínas MutL/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(19): 4930-4935, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439008

RESUMEN

Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/ß, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif (723QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif (723AKLIIP) with an exo1Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Proteínas MutL , Antígeno Nuclear de Célula en Proliferación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Secuencias de Aminoácidos , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/química , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Proteínas MutL/química , Proteínas MutL/genética , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genes Dev ; 25(4): 350-62, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21325134

RESUMEN

Repair of dsDNA breaks requires processing to produce 3'-terminated ssDNA. We biochemically reconstituted DNA end resection using purified human proteins: Bloom helicase (BLM); DNA2 helicase/nuclease; Exonuclease 1 (EXO1); the complex comprising MRE11, RAD50, and NBS1 (MRN); and Replication protein A (RPA). Resection occurs via two routes. In one, BLM and DNA2 physically and specifically interact to resect DNA in a process that is ATP-dependent and requires BLM helicase and DNA2 nuclease functions. RPA is essential for both DNA unwinding by BLM and enforcing 5' → 3' resection polarity by DNA2. MRN accelerates processing by recruiting BLM to the end. In the other, EXO1 resects the DNA and is stimulated by BLM, MRN, and RPA. BLM increases the affinity of EXO1 for ends, and MRN recruits and enhances the processivity of EXO1. Our results establish two of the core machineries that initiate recombinational DNA repair in human cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Ácido Anhídrido Hidrolasas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Roturas del ADN de Cadena Simple , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/fisiología , Humanos , Técnicas In Vitro , Proteína Homóloga de MRE11 , Modelos Biológicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Unión Proteica/fisiología , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , RecQ Helicasas/fisiología , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Proteína de Replicación A/fisiología
7.
Mol Cell ; 39(1): 145-51, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603082

RESUMEN

DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.


Asunto(s)
Adenosina Trifosfatasas/química , Bacillus subtilis/enzimología , Adenosina Trifosfatasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Reparación de la Incompatibilidad de ADN , Endonucleasas/química , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Zinc/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(35): 10914-9, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283381

RESUMEN

DNA mismatch repair (MMR) identifies and corrects errors made during replication. In all organisms except those expressing MutH, interactions between a DNA mismatch, MutS, MutL, and the replication processivity factor (ß-clamp or PCNA) activate the latent MutL endonuclease to nick the error-containing daughter strand. This nick provides an entry point for downstream repair proteins. Despite the well-established significance of strand-specific nicking in MMR, the mechanism(s) by which MutS and MutL assemble on mismatch DNA to allow the subsequent activation of MutL's endonuclease activity by ß-clamp/PCNA remains elusive. In both prokaryotes and eukaryotes, MutS homologs undergo conformational changes to a mobile clamp state that can move away from the mismatch. However, the function of this MutS mobile clamp is unknown. Furthermore, whether the interaction with MutL leads to a mobile MutS-MutL complex or a mismatch-localized complex is hotly debated. We used single molecule FRET to determine that Thermus aquaticus MutL traps MutS at a DNA mismatch after recognition but before its conversion to a sliding clamp. Rather than a clamp, a conformationally dynamic protein assembly typically containing more MutL than MutS is formed at the mismatch. This complex provides a local marker where interaction with ß-clamp/PCNA could distinguish parent/daughter strand identity. Our finding that MutL fundamentally changes MutS actions following mismatch detection reframes current thinking on MMR signaling processes critical for genomic stability.


Asunto(s)
Proteínas Bacterianas/genética , Disparidad de Par Base , Thermus/genética , Genes Bacterianos
9.
J Biol Chem ; 291(25): 13216-28, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27129233

RESUMEN

Eukaryotic topoisomerase 2 (Top2) and one of its interacting partners, topoisomerase IIß binding protein 1 (TopBP1) are two proteins performing essential cellular functions. We mapped the interacting domains of these two proteins using co-immunoprecipitation and pulldown experiments with truncated or mutant Drosophila Top2 with various Ser-to-Ala substitutions. We discovered that the last 20 amino acids of Top2 represent the key region for binding with Mus101 (the Drosophila homolog of TopBP1) and that phosphorylation of Ser-1428 and Ser-1443 is important for Top2 to interact with the N terminus of Mus101, which contains the BRCT1/2 domains. The interaction between Mus101 and the Top2 C-terminal regulatory domain is phosphorylation-dependent because treatment with phosphatase abolishes their association in pulldown assays. The binding affinity of N-terminal Mus101 with a synthetic phosphorylated peptide spanning the last 25 amino acids of Top2 (with Ser(P)-1428 and Ser(P)-1443) was determined by surface plasmon resonance with a Kd of 0.57 µm In an in vitro decatenation assay, Mus101 can specifically reduce the decatenation activity of Top2, and dephosphorylation of Top2 attenuates this response. Next, we endeavored to establish a cellular system for testing the biological function of Top2-Mus101 interaction. Top2-silenced S2 cells rescued by Top2Δ20, Top2 with 20 amino acids truncated from the C terminus, developed abnormally high chromosome numbers, which implies that Top2-Mus101 interaction is important for maintaining the fidelity of chromosome segregation during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , ADN-Topoisomerasas de Tipo II/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ciclo Celular , Línea Celular , Cromosomas de Insectos/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cinetoplasto/fisiología , Datos de Secuencia Molecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas
10.
Nucleic Acids Res ; 42(11): 7104-12, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24829455

RESUMEN

Genetic and biochemical studies have previously implicated exonuclease 1 (Exo1) in yeast and mammalian mismatch repair, with results suggesting that function of the protein in the reaction depends on both its hydrolytic activity and its ability to interact with other components of the repair system. However, recent analysis of an Exo1-E109K knockin mouse has concluded that Exo1 function in mammalian mismatch repair is restricted to a structural role, a conclusion based on a prior report that N-terminal His-tagged Exo1-E109K is hydrolytically defective. Because Glu-109 is distant from the nuclease hydrolytic center, we have compared the activity of untagged full-length Exo1-E109K with that of wild type Exo1 and the hydrolytically defective active site mutant Exo1-D173A. We show that the activity of Exo1-E109K is comparable to that of wild type enzyme in a conventional exonuclease assay and that in contrast to a D173A active site mutant, Exo1-E109K is fully functional in mismatch-provoked excision and repair. We conclude that the catalytic function of Exo1 is required for its participation in mismatch repair. We also consider the other phenotypes of the Exo1-E109K mouse in the context of Exo1 hydrolytic function.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Exodesoxirribonucleasas/metabolismo , Animales , Exodesoxirribonucleasas/genética , Hidrólisis , Ratones , Mutación
11.
Proc Natl Acad Sci U S A ; 110(30): 12277-82, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23840062

RESUMEN

MutLα endonuclease can be activated on covalently continuous DNA that contains a MutSα- or MutSß-recognizable lesion and a helix perturbation that supports proliferating cell nuclear antigen (PCNA) loading by replication factor C, providing a potential mechanism for triggering mismatch repair on nonreplicating DNA. Because mouse models for somatic expansion of disease-associated (CAG)n/(CTG)n triplet repeat sequences have implicated both MutSß and MutLα and have suggested that expansions can occur in the absence of replication, we have asked whether an extrahelical (CAG)n or (CTG)n element is sufficient to trigger MutLα activation. (CAG)n and (CTG)n extrusions in relaxed closed circular DNA do in fact support MutSß-, replication factor C-, and PCNA-dependent activation of MutLα endonuclease, which can incise either DNA strand. Extrahelical elements of two or three repeat units are the preferred substrates for MutLα activation, and extrusions of this size also serve as moderately effective sites for loading the PCNA clamp. Relaxed heteroduplex DNA containing a two or three-repeat unit extrusion also triggers MutSß- and MutLα-endonuclease-dependent mismatch repair in nuclear extracts of human cells. This reaction occurs without obvious strand bias at about 10% the rate of that observed with otherwise identical nicked heteroduplex DNA. These findings provide a mechanism for initiation of triplet repeat processing in nonreplicating DNA that is consistent with several features of the model of Gomes-Pereira et al. [Gomes-Pereira M, Fortune MT, Ingram L, McAbney JP, Monckton DG (2004) Hum Mol Genet 13(16):1815-1825]. They may also have implications for triplet repeat processing at a replication fork.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Repeticiones de Trinucleótidos , Activación Enzimática , Humanos , Proteínas MutL
12.
Angew Chem Int Ed Engl ; 55(30): 8490-501, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27198632

RESUMEN

DNA molecules are not completely stable, they are subject to chemical or photochemical damage and errors that occur during DNA replication resulting in mismatched base pairs. Through mechanistic studies Paul Modrich showed how replication errors are corrected by strand-directed mismatch repair in Escherichia coli and human cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/fisiología , Escherichia coli/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , Metilación de ADN , Proteínas de Escherichia coli/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
13.
J Biol Chem ; 289(8): 5074-82, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24403078

RESUMEN

DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5' to 3' exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.


Asunto(s)
Daño del ADN , Reparación del ADN , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Exodesoxirribonucleasas/metabolismo , Humanos , Cinética , Ratones , Modelos Biológicos , Fosforilación , Proteína de Replicación A/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(37): 16066-71, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20713735

RESUMEN

MutLα (MLH1-PMS2) is a latent endonuclease that is activated in a mismatch-, MutSα-, proliferating cell nuclear antigen (PCNA)-, replication factor C (RFC)-, and ATP-dependent manner, with nuclease action directed to the heteroduplex strand that contains a preexisting break. RFC depletion experiments and use of linear DNAs indicate that RFC function in endonuclease activation is limited to PCNA loading. Whereas nicked circular heteroduplex DNA is a good substrate for PCNA loading and for endonuclease activation on the incised strand, covalently closed, relaxed circular DNA is a poor substrate for both reactions. However, covalently closed supercoiled or bubble-containing relaxed heteroduplexes, which do support PCNA loading, also support MutLα activation, but in this case cleavage strand bias is largely abolished. Based on these findings we suggest that PCNA has two roles in MutLα function: The clamp is required for endonuclease activation, an effect that apparently involves interaction of the two proteins, and by virtue of its loading orientation, PCNA determines the strand direction of MutLα incision. These results also provide a potential mechanism for activation of mismatch repair on nonreplicating DNA, an effect that may have implications for the somatic phase of triplet repeat expansion.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Endonucleasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Activación Enzimática , Proteína de Replicación C/metabolismo
15.
Proc Natl Acad Sci U S A ; 107(30): 13384-9, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20624957

RESUMEN

The DNA mismatch repair protein PMS2 was recently found to encode a novel endonuclease activity. To determine the biological functions of this activity in mammals, we generated endonuclease-deficient Pms2E702K knock-in mice. Pms2EK/EK mice displayed increased genomic mutation rates and a strong cancer predisposition. In addition, class switch recombination, but not somatic hypermutation, was impaired in Pms2EK/EK B cells, indicating a specific role in Ig diversity. In contrast to Pms2-/- mice, Pms2EK/EK male mice were fertile, indicating that this activity is dispensable in spermatogenesis. Therefore, the PMS2 endonuclease activity has distinct biological functions and is essential for genome maintenance and tumor suppression.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica , Adenosina Trifosfatasas/genética , Animales , Células Cultivadas , Reparación de la Incompatibilidad de ADN/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/citología , Endonucleasas/genética , Femenino , Fertilidad/genética , Fibroblastos/citología , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Linfoma/genética , Masculino , Ratones , Ratones Noqueados , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Proc Natl Acad Sci U S A ; 106(21): 8495-500, 2009 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-19420220

RESUMEN

Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5' to 3' hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutL alpha-dependent and requires functional integrity of the MutL alpha endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutS alpha, MutL alpha, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase delta that supports Exo1-independent repair in vitro. Repair in this system depends on MutL alpha incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Animales , Línea Celular , ADN/genética , ADN/metabolismo , Exodesoxirribonucleasas/deficiencia , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Ratones , Ratones Noqueados
17.
J Biol Chem ; 285(8): 5974-82, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20029092

RESUMEN

At clinically relevant doses, chemotherapeutic S(N)1 DNA methylating agents induce an ATR-mediated checkpoint response in human cells that is dependent on functional MutSalpha and MutLalpha. Deficiency of either mismatch repair activity renders cells highly resistant to this class of drug, but the mechanisms linking mismatch repair to checkpoint activation have remained elusive. In this study we have systematically examined the interactions of human MutSalpha and MutLalpha with proteins of the ATR-Chk1 pathway using both nuclear extracts and purified proteins. Using nuclear co-immunoprecipitation, we have detected interaction of MutSalpha with ATR, TopBP1, Claspin, and Chk1 and interaction of MutLalpha with TopBP1 and Claspin. We were unable to detect interaction of MutSalpha or MutLalpha with Rad17, Rad9, or replication protein A in the extract system. Use of purified proteins confirmed direct interaction of MutSalpha with ATR, TopBP1, and Chk1 and of MutLalpha with TopBP1. MutSalpha-Claspin and MutLalpha-Claspin interactions were not demonstrable with purified proteins, suggesting that extract interactions are indirect or depend on post-translational modification. Use of a modified chromatin immunoprecipitation assay showed that proliferating cell nuclear antigen, ATR, TopBP1, and Chk1 are recruited to chromatin in a MutLalpha- and MutSalpha-dependent fashion after N-methyl-N'-nitro-N-nitrosoguanidine treatment. However, chromatin enrichment of replication protein A, Claspin, Rad17-RFC, and Rad9-Rad1-Hus1 was not detected in these experiments. Although our failure to observe enrichment of the latter activities could be due to sensitivity limitations, these observations may indicate a novel mechanism for ATR activation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación de la Incompatibilidad de ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacología , Proteínas MutL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo
18.
J Biol Chem ; 285(15): 11730-9, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20154325

RESUMEN

MutSbeta (MSH2-MSH3) mediates repair of insertion-deletion heterologies but also triggers triplet repeat expansions that cause neurological diseases. Like other DNA metabolic activities, MutSbeta interacts with proliferating cell nuclear antigen (PCNA) via a conserved motif (QXX(L/I)XXFF). We demonstrate that MutSbeta-PCNA complex formation occurs with an affinity of approximately 0.1 microM and a preferred stoichiometry of 1:1. However, up to 20% of complexes are multivalent under conditions where MutSbeta is in molar excess over PCNA. Conformational studies indicate that the two proteins associate in an end-to-end fashion in solution. Surprisingly, mutation of the PCNA-binding motif of MutSbeta not only abolishes PCNA binding, but unlike MutSalpha, also dramatically attenuates MutSbeta-MutLalpha interaction, MutLalpha endonuclease activation, and bidirectional mismatch repair. As predicted by these findings, PCNA competes with MutLalpha for binding to MutSbeta, an effect that is blocked by the cell cycle regulator p21(CIP1). We propose that MutSbeta-MutLalpha interaction is mediated in part by residues ((L/I)SRFF) embedded within the MSH3 PCNA-binding motif. To our knowledge this is the first case where residues important for PCNA binding also mediate interaction with a second protein. These findings also indicate that MutSbeta- and MutSalpha-initiated repair events differ in fundamental ways.


Asunto(s)
Núcleo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Disparidad de Par Base , Sitios de Unión , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Reparación del ADN , Humanos , Insectos , Datos de Secuencia Molecular , Proteínas MutL , Mutación , Homología de Secuencia de Aminoácido
19.
Artículo en Inglés | MEDLINE | ID: mdl-21821902

RESUMEN

MutSß is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2-MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSß. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSß and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported.


Asunto(s)
Proteína 2 Homóloga a MutS/química , Cristalización , Cristalografía por Rayos X , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/aislamiento & purificación , Mutación , Unión Proteica
20.
Nucleic Acids Res ; 37(13): 4420-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19468048

RESUMEN

DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA-RPA and XPC-RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSbeta were sensitive to psoralen ICLs. To further investigate the role of MutSbeta in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSbeta and NER proteins with Tdp-ICLs. We found that MutSbeta bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSbeta interacted with XPA-RPA or XPC-RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair.


Asunto(s)
Daño del ADN , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Línea Celular , Reactivos de Enlaces Cruzados/química , ADN/química , Enzimas Reparadoras del ADN/metabolismo , Furocumarinas/química , Humanos , Proteína 3 Homóloga de MutS , Proteína de Replicación A/metabolismo , Proteína de la Xerodermia Pigmentosa del Grupo A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA