Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nucleic Acids Res ; 49(5): 2759-2776, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33591310

RESUMEN

The DNA damage-responsive tumor suppressors p53 and HIPK2 are well established regulators of cell fate decision-making and regulate the cellular sensitivity to DNA-damaging drugs. Here, we identify Deleted in Azoospermia-associated protein 2 (DAZAP2), a small adaptor protein, as a novel regulator of HIPK2 and specifier of the DNA damage-induced p53 response. Knock-down or genetic deletion of DAZAP2 strongly potentiates cancer cell chemosensitivity both in cells and in vivo using a mouse tumour xenograft model. In unstressed cells, DAZAP2 stimulates HIPK2 polyubiquitination and degradation through interplay with the ubiquitin ligase SIAH1. Upon DNA damage, HIPK2 site-specifically phosphorylates DAZAP2, which terminates its HIPK2-degrading function and triggers its re-localization to the cell nucleus. Interestingly, nuclear DAZAP2 interacts with p53 and specifies target gene expression through modulating a defined subset of p53 target genes. Furthermore, our results suggest that DAZAP2 co-occupies p53 response elements to specify target gene expression. Collectively, our findings propose DAZAP2 as novel regulator of the DNA damage-induced p53 response that controls cancer cell chemosensitivity.


Asunto(s)
Proteínas Portadoras/metabolismo , Daño del ADN , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
2.
Mol Cell ; 52(1): 37-51, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24076217

RESUMEN

The mechanisms that underlie and dictate the different biological outcomes of E2F-1 activity have yet to be elucidated. We describe the residue-specific methylation of E2F-1 by the asymmetric dimethylating protein arginine methyltransferase 1 (PRMT1) and symmetric dimethylating PRMT5 and relate the marks to different functional consequences of E2F-1 activity. Methylation by PRMT1 hinders methylation by PRMT5, which augments E2F-1-dependent apoptosis, whereas PRMT5-dependent methylation favors proliferation by antagonizing methylation by PRMT1. The ability of E2F-1 to prompt apoptosis in DNA damaged cells coincides with enhanced PRMT1 methylation. In contrast, cyclin A binding to E2F-1 impedes PRMT1 methylation and augments PRMT5 methylation, thus ensuring that E2F-1 is locked into its cell-cycle progression mode. The Tudor domain protein p100-TSN reads the symmetric methylation mark, and binding of p100-TSN downregulates E2F-1 apoptotic activity. Our results define an exquisite level of precision in the reader-writer interplay that governs the biological outcome of E2F-1 activity.


Asunto(s)
Apoptosis , Proliferación Celular , Factor de Transcripción E2F1/metabolismo , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Arginina , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Ciclina A/metabolismo , Daño del ADN , Factor de Transcripción E2F1/genética , Regulación de la Expresión Génica , Humanos , Metilación , Regiones Promotoras Genéticas , Unión Proteica , Proteína-Arginina N-Metiltransferasas/genética , Interferencia de ARN , Proteínas Represoras/genética , Transducción de Señal , Transcripción Genética , Transfección
3.
EMBO J ; 31(7): 1785-97, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22327218

RESUMEN

E2F transcription factors are implicated in diverse cellular functions. The founding member, E2F-1, is endowed with contradictory activities, being able to promote cell-cycle progression and induce apoptosis. However, the mechanisms that underlie the opposing outcomes of E2F-1 activation remain largely unknown. We show here that E2F-1 is directly methylated by PRMT5 (protein arginine methyltransferase 5), and that arginine methylation is responsible for regulating its biochemical and functional properties, which impacts on E2F-1-dependent growth control. Thus, depleting PRMT5 causes increased E2F-1 protein levels, which coincides with decreased growth rate and associated apoptosis. Arginine methylation influences E2F-1 protein stability, and the enhanced transcription of a variety of downstream target genes reflects increased E2F-1 DNA-binding activity. Importantly, E2F-1 is methylated in tumour cells, and a reduced level of methylation is evident under DNA damage conditions that allow E2F-1 stabilization and give rise to apoptosis. Significantly, in a subgroup of colorectal cancer, high levels of PRMT5 frequently coincide with low levels of E2F-1 and reflect a poor clinical outcome. Our results establish that arginine methylation regulates the biological activity of E2F-1 activity, and raise the possibility that arginine methylation contributes to tumourigenesis by influencing the E2F pathway.


Asunto(s)
Arginina/metabolismo , Transformación Celular Neoplásica/metabolismo , Factor de Transcripción E2F1/metabolismo , Apoptosis , Línea Celular Tumoral , Regulación de la Expresión Génica , Humanos , Metilación , Proteína Metiltransferasas/metabolismo , Estabilidad Proteica , Proteína-Arginina N-Metiltransferasas
4.
Mol Oncol ; 17(7): 1173-1191, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37013907

RESUMEN

Local hypoxia occurs in most solid tumors and is associated with aggressive disease and therapy resistance. Widespread changes in gene expression play a critical role in the biological response to hypoxia. However, most research has focused on hypoxia-inducible genes as opposed to those that are decreased in hypoxia. We demonstrate that chromatin accessibility is decreased in hypoxia, predominantly at gene promoters and specific pathways are impacted including DNA repair, splicing, and the R-loop interactome. One of the genes with decreased chromatin accessibility in hypoxia was DDX5, encoding the RNA helicase, DDX5, which showed reduced expression in various cancer cell lines in hypoxic conditions, tumor xenografts, and in patient samples with hypoxic tumors. Most interestingly, we found that when DDX5 is rescued in hypoxia, replication stress and R-loop levels accumulate further, demonstrating that hypoxia-mediated repression of DDX5 restricts R-loop accumulation. Together these data support the hypothesis that a critical part of the biological response to hypoxia is the repression of multiple R-loop processing factors; however, as shown for DDX5, their role is specific and distinct.


Asunto(s)
Cromatina , Estructuras R-Loop , Humanos , Línea Celular , Hipoxia/genética
5.
Cancer Res ; 71(6): 2350-9, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21248071

RESUMEN

HIPK2 activates the apoptotic arm of the DNA damage response by phosphorylating tumor suppressor p53 at serine 46. Unstressed cells keep HIPK2 levels low through targeted polyubiquitination and subsequent proteasomal degradation. Here we identify the LIM domain protein Zyxin as a novel regulator of the HIPK2-p53 signaling axis in response to DNA damage. Remarkably, depletion of endogenous Zyxin, which colocalizes with HIPK2 at the cytoskeleton and in the cell nucleus, stimulates proteasome-dependent HIPK2 degradation. In contrast, ectopic expression of Zyxin stabilizes HIPK2, even upon enforced expression of its ubiquitin ligase Siah-1. Consistently, Zyxin physically interacts with Siah-1, and knock-down of Siah-1 rescues HIPK2 expression in Zyxin-depleted cancer cells. Mechanistically, our data suggest that Zyxin regulates Siah-1 activity through interference with Siah-1 dimerization. Furthermore, we show that endogenous Zyxin coaccumulates with HIPK2 in response to DNA damage in cancer cells, and that depletion of endogenous Zyxin results in reduced HIPK2 protein levels and compromises DNA damage-induced p53 Ser46 phosphorylation and caspase activation. These findings suggest an unforeseen role for Zyxin in DNA damage-induced cell fate control through modulating the HIPK2-p53 signaling axis.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glicoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Apoptosis , Western Blotting , Proteínas Portadoras/genética , Caspasas/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto/genética , Daño del ADN , Activación Enzimática , Glicoproteínas/genética , Células HEK293 , Células Hep G2 , Humanos , Microscopía Confocal , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/genética , Serina/metabolismo , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Zixina
6.
Cancer Lett ; 292(1): 119-24, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20018442

RESUMEN

The molecular mechanisms by which hypoxic tumor cells escape radio- and chemotherapy are largely unclear. Homeodomain-interacting protein kinase 2 (HIPK2) drives the apoptotic program in response to DNA-damaging chemotherapeutic drug treatment by phosphorylating the tumor suppressor protein p53 at Ser46. HIPK2 is kept inactive in unstressed cells through ubiquitination and degradation facilitated by the ubiquitin ligases WSB1 and Siah1. Here, we demonstrate that HIPK2 is degraded during hypoxia in a proteasome-dependent and partially Siah1-dependent fashion. Concordantly, hypoxic tumor cells show an impaired p53 Ser46 phosphorylation in response to treatment with the chemotherapeutic Adriamycin. Remarkably, proteasome-inhibition rescues HIPK2 expression in hypoxic hepatoma cells and restores p53 Ser46 phosphorylation and caspase activity after Adriamycin treatment. Our findings suggest a molecular mechanism by which hypoxic cancer cells can escape chemotherapeutic drug treatment and suggest proteasome-inhibition as a promising approach to sensitise hypoxic cancer cells to therapy.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Proteínas Portadoras/metabolismo , Hipoxia de la Célula , Doxorrubicina/farmacología , Neoplasias Hepáticas/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Fosforilación , Inhibidores de Proteasoma , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nat Cell Biol ; 10(7): 812-24, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18536714

RESUMEN

The tumour suppressor HIPK2 is an important regulator of cell death induced by DNA damage, but how its activity is regulated remains largely unclear. Here we demonstrate that HIPK2 is an unstable protein that colocalizes and interacts with the E3 ubiquitin ligase Siah-1 in unstressed cells. Siah-1 knockdown increases HIPK2 stability and steady-state levels, whereas Siah-1 expression facilitates HIPK2 polyubiquitination, degradation and thereby inactivation. During recovery from sublethal DNA damage, HIPK2, which is stabilized on DNA damage, is degraded through a Siah-1-dependent, p53-controlled pathway. Downregulation of Siah-1 inhibits HIPK2 degradation and recovery from damage, driving the cells into apoptosis. We have also demonstrated that DNA damage triggers disruption of the HIPK2-Siah-1 complex, resulting in HIPK2 stabilization and activation. Disruption of the HIPK2-Siah-1 complex is mediated by the ATM/ATR pathway and involves ATM/ATR-dependent phosphorylation of Siah-1 at Ser 19. Our results provide a molecular framework for HIPK2 regulation in unstressed and damaged cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/genética , Estabilidad de Enzimas , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Ratones , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Serina/metabolismo , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA