Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 33(5): 41, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35507219

RESUMEN

Until now, a few studies have been conducted on the destructive effects of TiO2 NPs in living organisms, and studies on the toxicity of TiO2 NPs are still in the beginning phases. Because of the widespread use of TiO2 NPs in all areas of human life, it is essential to study their profound and fundamental toxic effects on each organ and body cell. Herein, we evaluate the effect of exposure to TiO2 NPs on in vitro models derived from the rat bone marrow and adipose tissues. Exposure to TiO2 NPs at 100 and 200 µg/ml exhibited cytotoxicity for the rat bone marrow mesenchymal stem cells (rBMSCs) and rat adipose mesenchymal stem cells (rATSC), respectively. Additionally, reduced rBMSCs and rATSCs frequencies in the S phase of the cell cycle. Moreover, TiO2 NPs enhanced the activity of cellular senescence-associated ß-galactosidase in both model cells. Significantly higher relative expression of aging-related genes P53 and NF-kB (p < 0.05) and lower expression levels of anti-aging-related genes Nanog and SIRT1 were found in the treated cells (p < 0.05). Colony-forming and DAPI staining showed the reduction of cell growth and DNA damage in both rBMSCs and rATSCs. Our findings along with other similar findings showed that TiO2 NPs probably have negative effects on the cell growth, prompt the cells for entry into proliferation stop, DNA damage, and trigger the aging process. Graphical abstract.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Daño del ADN , Nanopartículas del Metal/toxicidad , FN-kappa B/metabolismo , Nanopartículas/toxicidad , Ratas , Titanio/toxicidad
2.
Microb Pathog ; 149: 104560, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068733

RESUMEN

Infectious Bronchitis (IB) is an economically important avian disease that considerably threatens the global poultry industry. This is partly, as a result of its negative consequences on egg production, weight gain as well as mortality rate.The disease is caused by a constantly evolving avian infectious bronchitis virus whose isolates are classified into several serotypes and genotypes that demonstrate little or no cross protection. In order to curb the menace of the disease therefore, broad based vaccines are urgently needed. The aim of this study was to develop a recombinant DNA vaccine candidate for improved protection of avian infectious bronchitis in poultry. Using bioinformatics and molecular cloning procedures, sets of monovalent and bivalent DNA vaccine constructs were developed based on the S1 glycoprotein from classical and variants IBV strains namely, M41 and CR88 respectively. The candidate vaccine was then encapsulated with a chitosan and saponin formulated nanoparticle for enhanced immunogenicity and protective capacity. RT-PCR assay and IFAT were used to confirm the transcriptional and translational expression of the encoded proteins respectively, while ELISA and Flow-cytometry were used to evaluate the immunogenicity of the candidate vaccine following immunization of various SPF chicken groups (A-F). Furthermore, histopathological changes and virus shedding were determined by quantitative realtime PCR assay and lesion scoring procedure respectively following challenge of various subgroups with respective wild-type IBV viruses. Results obtained from this study showed that, groups vaccinated with a bivalent DNA vaccine construct (pBudCR88-S1/M41-S1) had a significant increase in anti-IBV antibodies, CD3+ and CD8+ T-cells responses as compared to non-vaccinated groups. Likewise, the bivalent vaccine candidate significantly decreased the oropharyngeal and cloacal virus shedding (p < 0.05) compared to non-vaccinated control. Chickens immunized with the bivalent vaccine also exhibited milder clinical signs as well as low tracheal and kidney lesion scores following virus challenge when compared to control groups. Collectively, the present study demonstrated that bivalent DNA vaccine co-expressing dual S1 glycoprotein induced strong immune responses capable of protecting chickens against infection with both M41 and CR88 IBV strains. Moreso, it was evident that encapsulation of the vaccine with chitosan-saponin nanoparticle further enhanced immune responses and abrogates the need for multiple booster administration of vaccine. Therefore, the bivalent DNA vaccine could serve as efficient and effective alternative strategy for the control of IB in poultry.


Asunto(s)
Quitosano/inmunología , Infecciones por Coronavirus/veterinaria , Virus de la Bronquitis Infecciosa/inmunología , Enfermedades de las Aves de Corral/inmunología , Saponinas/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Bronquitis/inmunología , Bronquitis/prevención & control , Bronquitis/veterinaria , Linfocitos T CD8-positivos/inmunología , Pollos , Quitosano/química , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Protección Cruzada , Inmunidad Celular , Inmunización Secundaria/veterinaria , Inmunogenicidad Vacunal , Nanopartículas/química , Enfermedades de las Aves de Corral/prevención & control , Saponinas/química , Vacunación/veterinaria , Vacunas de ADN/química , Vacunas de ADN/genética , Vacunas Virales/química , Vacunas Virales/genética
3.
Virol J ; 16(1): 100, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399106

RESUMEN

BACKGROUND: Recombinant Modified Vaccinia Virus Ankara has been employed as a safe and potent viral vector vaccine against infectious diseases and cancer. We generated recMVAs encoding norovirus GII.4 genotype capsid protein by using a marker-based approach and a BAC-based system. In the marker-based approach, the capsid gene together with a reporter gene was introduced into the MVA genome in DF-1 cells. Several rounds of plaque purification were carried out to get rid of the WT-MVA. In the BAC-based approach, recMVA-BAC was produced by en passant recombineering in E. coli. Subsequently, the recMVAs were rescued in DF-1 cells using a helper rabbit fibroma virus. The BAC backbone and the helper virus were eliminated by passaging in DF-1 cells. Biochemical characteristics of the recMVAs were studied. RESULTS: We found the purification of the rare spontaneous recombinants time-consuming in the marker-based system. In contrast, the BAC-based system rapidly inserted the gene of interest in E. coli by en passant recombineering before virion production in DF-1 cells. The elimination of the reporter gene was found to be faster and more efficient in the BAC-based approach. With Western blotting and electron microscopy, we could prove successful capsid protein expression and proper virus-assembly, respectively. The MVA-BAC produced higher recombinant virus titers and infected DF-1 cells more efficiently. CONCLUSIONS: Comparing both methods, we conclude that, in contrast to the tedious and time-consuming traditional method, the MVA-BAC system allows us to quickly generate high titer recMVAs.


Asunto(s)
Proteínas de la Cápside/genética , Cromosomas Artificiales Bacterianos , Norovirus/genética , Recombinación Genética , Virus Vaccinia/genética , Ingeniería Genética , Vectores Genéticos , Virión/genética
4.
J Pharm Pharm Sci ; 19(3): 325-338, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27806247

RESUMEN

PURPOSE: In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. METHODS: First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. RESULTS: TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (P<0.05). CONCLUSIONS: The findings of this study suggest that TAT-conjugated PAMAM dendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Dendrímeros/química , Dendrímeros/farmacocinética , Técnicas de Transferencia de Gen , Péptidos/química , Vacunas de ADN/química , Vacunas de ADN/farmacocinética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Animales , Chlorocebus aethiops , Péptidos/farmacocinética , Poliaminas/química , Vacunas de ADN/genética , Células Vero , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/farmacocinética
5.
Biotechnol Lett ; 36(7): 1479-84, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24652546

RESUMEN

The periplasmic proteome of recombinant E. coli cells expressing human interferon-α2b (INF-α2b) was analysed by 2D-gel electrophoresis to find the most altered proteins. Of some unique up- and down-regulated proteins in the proteome, ten were identified by MS. The majority of the proteins belonged to the ABC transporter protein family. Other affected proteins were ones involved in the regulation of transcription such as DNA-binding response regulator, stress-related proteins and ecotin. Thus, the production of INF-α2b acts as a stress on the cells and results in the induction of various transporters and stress related proteins.


Asunto(s)
Proteínas de Escherichia coli/análisis , Escherichia coli/química , Escherichia coli/metabolismo , Interferón-alfa/metabolismo , Proteínas Periplasmáticas/análisis , Proteoma/análisis , Electroforesis en Gel Bidimensional , Escherichia coli/genética , Humanos , Interferón alfa-2 , Interferón-alfa/genética , Espectrometría de Masas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Microbes Infect ; : 105412, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236991

RESUMEN

Human norovirus (HuNoV) is a major global cause of acute gastroenteritis, with vaccine development facing several challenges. Despite years of research, there are currently no licensed vaccines available for controlling HuNoVs. Here, we describe the construction and testing of a replication-deficient Sendai virus (SeV) vector as a potential vaccine candidate against the HuNoV GII.4 genotype. SeV was chosen as the vaccine backbone due to its non-pathogenic nature in humans, its capability for long-term antigen expression in mammalian cells, and its suitability for mucosal administration. By inserting the HuNoV GII.4 capsid gene, VP1, into the SeV genome, we generated a replication-deficient SeV (SeV/dP.VP1) vector. The resultant SeV/dP.VP1 virus were observed to successfully express the inserted NoV VP1 gene upon infection. Inoculating the vaccine into wild-type mice elicited NoV-specific IgG antibodies, along with INF-γ and IL-2-producing T cells, through both intranasal (i.n.) and intramuscular (i.m.) immunization. Furthermore, a significant level of NoV-specific IgA was detected in lung homogenates after i.n. immunization, particularly using a high dose of the viral vector. Additionally, a synergistic effect was observed with heterologous prime-boost regimens using SeV/dP.VP1 and MVA.VP1 vectors, indicating the potential for more robust immune responses when the vaccine design is optimized. Our study demonstrates the potential of a SeV vaccine candidate in eliciting a broad immune response and lays the foundation for further exploration of the SeV vector platform's potential as a HuNoV vaccine. Additionally, the results emphasize the importance of vaccine dosage and administration route, highlighting the need for tailored immunization strategies.

7.
Mol Reprod Dev ; 80(9): 718-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23740886

RESUMEN

Seminal proteins can be considered as factors that control fertilization. Clusterin is one such protein that has been implicated in many activities, including apoptosis inhibition, cell cycle control, DNA repair, and sperm maturation. In this study, the relationship between human secretory clusterin (sCLU) in seminal plasma with sperm parameters, protamine deficiency, and DNA fragmentation was investigated. Semen samples were collected from 63 Iranian men, and semen analysis was performed according to World Health Organization criteria and computer aided semen analysis (CASA). The concentration of sCLU in seminal plasma was measured by enzyme-linked immunosorbant assay (ELISA), protamine deficiency was determined by chromomycin A3 staining (CMA3 ), and sperm DNA fragmentation was checked by sperm chromatin dispersion (SCD) assay. The level of sCLU in seminal fluid of fertile patients was 48.3 ± 38.6 ng/ml and in infertile patients was 15.5 ± 9.7 ng/ml; this difference was significant (P < 0.001). sCLU correlated negatively with protamine deficiency, sperm DNA fragmentation, and abnormal morphology. In conclusion, seminal clusterin can be considered as a marker for the quick assessment of semen quality in male infertility studies.


Asunto(s)
Biomarcadores/metabolismo , Clusterina/metabolismo , Fragmentación del ADN , Infertilidad Masculina/diagnóstico , Protaminas/metabolismo , Semen/metabolismo , Espermatozoides/fisiología , Cromatina/metabolismo , Cromomicina A3 , Ensayo de Inmunoadsorción Enzimática , Humanos , Hibridación Fluorescente in Situ/métodos , Irán , Masculino , Análisis de Semen
8.
AMB Express ; 13(1): 114, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848725

RESUMEN

In the present study, for the first time, we released and assembled the particles of three major structural proteins of velogenic NDV (M, HN, and F glycoproteins) as a NDV-VLPs. The ElISA result of the cytokines of splenocyte suspension cells showed that IL2, IL10, TNF-α, and IFN- Ë  titers were significantly higher (p ≤ 0.05) in mice that were immunized only with NDV-VLPs three times with a 10-day interval, in comparison to those that were immunized with NDV-VLPs twice in a 10-day interval and received a B1 live vaccine boost on the third interval. Flow cytometry results showed that CD8 + titers in the group that only received NDV-VLP was higher than other group. However, serum ELISA results did not show a significantly (p ≥ 0.05) higher NDV antibody titer in NDV-VLPs immunized mice compared to the boosted group. Besides, HI results of SPF chickens vaccinated with NDV-VLPs and boosted with B1 live vaccine were significantly (p ≤ 0.05) higher than those that only received NDV-VLPs. Interestingly, after challenging with NDV sub-genotype VII, all the chickens that were solely vaccinated with NDV-VLPs remained alive (six out of six), whereas two out of six chickens that were vaccinated with NDV-VLPs and also received the B1 live vaccine boost died. In conclusion, our results strongly indicated that the T-cell immune response in an NDV host is more important than the B-cell response. Also, the results of the present study revealed that to completely protect chickens against velogenic NDV strains, a vaccine comprising specific epitopes of velogenic strain is needed.

9.
Front Microbiol ; 14: 1194292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577438

RESUMEN

This study presents a green synthesis approach for the fabrication of zinc oxide-silver nanoparticles (ZnO-Ag-NPs) using Punica granatum fruit peels extract as a natural reducing and stabilizing agent. This eco-friendly method offers a sustainable alternative to conventional methods that often employ toxic or hazardous chemicals. Antibacterial and anti-cancer activities of the green synthesized nanoparticles were then assessed in vitro. X-ray diffraction confirmed the production of ZnO-Ag-NPs with increasing crystallinity in higher pH values. The ZnO-Ag-NPs were found to be agglomerated with spherical Ag-NPs. Fourier Transform Infrared (FTIR) spectra revealed a broad band in ZnO-Ag-NPs ranging from 400-1 to 530 cm-1 with reduced intensity as compared to ZnO-NPs, indicating the formation of Ag-NPs on the surface of ZnO-NPs. The synthesized ZnO-Ag-NPs exhibited potent antibacterial activity against a broad spectrum of bacterial strains, particularly Gram-positive bacteria, with superior inhibition activity compared to ZnO-NPs. Moreover, ZnO-Ag-NPs showed a dose-dependent anti-proliferative effect on colorectal-, lung-, and cervical cancer cells. ZnO-Ag-NPs showed significantly greater efficacy in inhibiting cancer cell growth at a lower concentration of 31.25 µg/mL, compared to ZnO-NPs which required over 500 µg/mL, possibly due to the presence of silver nanoparticles (Ag-NPs). The results obtained from this study demonstrate the potential of green synthesis approaches in the fabrication of therapeutic nanomaterials for cancer treatment, as well as other biomedical applications.

10.
Int J Biol Macromol ; 233: 123388, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706873

RESUMEN

Polysaccharide-based magnetic nanocomposites can eminently illuminate several attractive features as anticancer drug carriers. In this study, rice straw-based cellulose nanowhisker (CNW) was used as solid support for Fe3O4 nanofillers to synthesize magnetic CNW. Then, cross-linked chitosan-coated magnetic CNW for 5-fluorouracil carrier abbreviated as CH/MCNW/5FU. Fourier-transform infrared, X-Ray diffraction, and X-ray photoelectron spectroscopy analysis indicated successful fabrication and multifunctional properties of the CH/MCNW/5FU nanocomposites. In addition, CH/MCNW/5FU nanocomposites showed hydrodynamic diameter and zeta potential value of 181.31 ± 3.46 nm and +23 ± 1.8 mV, respectively. Based on images of transmission electron microscopy, magnetic CNW as reinforcement was coated with chitosan to obtain almost spherical CH/MCNW/5FU nanocomposites with an average diameter of 37.16 ± 3.08. The nanocomposites indicated desired saturation magnetization and thermal stability, high drug encapsulation efficiency, and pH-dependent swelling and drug release performance. CH/MCNW/5FU nanocomposites showed potent killing effects against colorectal cancer cells in both 2D monolayer and 3D spheroid models. These findings suggest CH/MCNW as a potential carrier for anticancer drugs with high tumour-penetrating capacity.


Asunto(s)
Quitosano , Neoplasias Colorrectales , Nanocompuestos , Humanos , Celulosa/química , Quitosano/química , Sistemas de Liberación de Medicamentos , Fluorouracilo/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Fenómenos Magnéticos , Nanocompuestos/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Liberación de Fármacos
11.
Mol Biol Rep ; 39(5): 5785-90, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22223294

RESUMEN

White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.


Asunto(s)
Perfilación de la Expresión Génica , Nodaviridae/genética , Palaemonidae/virología , Filogenia , Infecciones por Virus ARN/virología , Animales , Secuencia de Bases , Electroforesis en Gel de Agar , Regulación Viral de la Expresión Génica , Geografía , Haplotipos/genética , Malasia , Nodaviridae/aislamiento & purificación , Infecciones por Virus ARN/patología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Programas Informáticos
12.
Front Mol Biosci ; 9: 997471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304924

RESUMEN

Colorectal cancer is one of the most killing cancers and this has become a global problem. Current treatment and anticancer drugs cannot specifically target the cancerous cells, thus causing toxicity towards surrounding non-cancer cells. Hence, there is an urgent need to discover a more target-specific therapeutic agent to overcome this problem. Core-shell nanoparticles have emerged as good candidate for anticancer treatment. This study aimed to synthesize core-shell nanoparticles via green method which utilised crude peels extract of Garcinia mangostana as reducing and stabilising agents for drug delivery. Gold-silver core-shell nanoparticles (Au-AgNPs) were synthesized through seed germination process in which gold nanoparticles acted as the seed. A complete coating was observed through transmission electron microscopy (TEM) when the ratio of AuNPs and AgNPs was 1:9. The size of Au-AgNPs was 38.22 ± 8.41 nm and was mostly spherical in shape. Plant-based drug, protocatechuic acid (PCA) was loaded on the Au-AgNPs to investigate their anticancer activity. In HCT116 colon cancer cells, PCA-loaded Au-AgNPs (IC50 = 10.78 µg/ml) showed higher inhibitory action than the free PCA (IC50= 148.09 µg/ml) and Au-AgNPs alone (IC50= 24.36 µg/ml). Up to 80% inhibition of HCT116 cells was observed after the treatment of PCA-loaded Au-AgNPs at 15.63 µg/ml. The PCA-loaded Au-AgNPs also showed a better selectivity towards HCT116 compared to CCD112 colon normal cells when tested at the same concentrations. These findings suggest that Au-AgNPs system can be used as a potent nanocarrier to combat cancerous cells by offering additional anticancer properties to the loaded drug.

13.
Front Microbiol ; 13: 1049037, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483200

RESUMEN

Introduction: The control of Newcastle disease virus (NDV) infection depends solely on vaccination which in most cases is not sufficient to restrain the consequences of such a highly evolving viral disease. Finding out substances for preparing an efficient anti-ND drug would be of high value. n-Docosanol is a saturated fatty alcohol with an inhibitory effect against many enveloped viruses. In this study, we evaluated the therapeutic effect of n-docosanol on NDV infection and shedding in chickens. Methods: Chickens infected with a highly virulent NDV were treated with low to high concentrations of n-docosanol (20, 40, and 60 mg/kg body weight) for 4-successive days, once they showed the disease symptoms. Survival and curative rates, virus load, histopathological scoring, and virus shedding were defined. Results: Symptoms development was found to discontinue 24-72 hours post-treatment. Survival rate in the NDV-infected chickens raised 37.4-53.2% after the treatment. n-Docosanol treatment was also found to significantly reduce virus load in the digestive (26.2-33.9%), respiratory (38.3-63%), nervous (26.7-51.1%), and lymphatic (16.4-29.1%) tissues. Histopathological scoring of NDV lesions revealed prominent rescue effects on the histology of different tissues. Importantly, n-docosanol treatment significantly reduced virus shedding in oropharyngeal discharge and feces thereby allowing the restriction of NDV spread. Conclusion: Our findings suggest n-docosanol as a promising remedy in the control strategy of Newcastle disease in the poultry industry.

14.
Front Mol Biosci ; 9: 995853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250022

RESUMEN

The combination of graphene-based materials and inorganic nanoparticles for the enhancement of the nanomaterial properties is extensively explored nowadays. In the present work, we used a sonochemical method to synthesize a copper/reduced graphene oxide (Cu/RGO) nanocomposite using Australian honey and vitamin C as capping and reducing agents, respectively. The honey-mediated copper/reduced graphene oxide (H/Cu/RGO) nanocomposite was then characterized through UV-visible, XRD, HRTEM, and FTIR analysis. The copper nanoparticles (Cu-NPs) in the nanocomposite formed uniform spherical shapes with a size of 2.20 ± 0.70 nm, which attached to the reduced graphene oxide (RGO) layers. The nanocomposite could suppress bacterial growth in both types of bacteria strains. However, in this study, the nanocomposite exhibited good bactericidal activity toward the Gram-positive bacteria than the Gram-negative bacteria. It also showed a cytotoxic effect on the cancer colorectal cell line HCT11, even in low concentrations. These results suggested that the H/Cu/RGO nanocomposite can be a suitable component for biomedical applications.

15.
Virol J ; 8: 119, 2011 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-21401953

RESUMEN

BACKGROUND: Studies have shown that the VP22 gene of Marek's Disease Virus type-1 (MDV-1) has the property of movement between cells from the original cell of expression into the neighboring cells. The ability to facilitate the spreading of the linked proteins was used to improve the potency of the constructed DNA vaccines against chicken anemia virus (CAV). METHODS: The VP1 and VP2 genes of CAV isolate SMSC-1 were amplified and inserted into eukaryotic co-expression vector, pBudCE4.1 to construct pBudVP2-VP1. We also constructed pBudVP2-VP1/VP22 encoding CAV VP2 and the VP22 of MDV-1 linked to the CAV VP1. In vitro expression of the genes was confirmed by using RT-PCR, Western blot and indirect immunofluorescence. The vaccines were then tested in 2-week-old SPF chickens which were inoculated with the DNA plasmid constructs by the intramuscular route. After in vivo expression studies, immune responses of the immunized chickens were evaluated pre- and post-immunization. RESULTS: Chickens vaccinated with pBudVP2-VP1/VP22 exhibited a significant increase in antibody titers to CAV and also proliferation induction of splenocytes in comparison to the chickens vaccinated with pBudVP2-VP1. Furthermore, the pBudVP2-VP1/VP22-vaccinated group showed higher level of the Th1 cytokines IL-2 and IFN-γ. CONCLUSIONS: This study showed that MDV-1 VP22 gene is capable of enhancing the potency of DNA vaccine against CAV when fused with the CAV VP1 gene.


Asunto(s)
Proteínas de la Cápside/inmunología , Virus de la Anemia del Pollo/inmunología , Infecciones por Circoviridae/veterinaria , Herpesvirus Gallináceo 2/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas de ADN/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Virus de la Anemia del Pollo/genética , Pollos , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/virología , Herpesvirus Gallináceo 2/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunación , Vacunas de ADN/genética , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
16.
Appl Microbiol Biotechnol ; 90(1): 77-88, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21181148

RESUMEN

The AcmA binding domains of Lactococcus lactis were used to display the VP1 protein of chicken anemia virus (CAV) on Lactobacillus acidophilus. One and two repeats of the cell wall binding domain of acmA gene were amplified from L. lactis MG1363 genome and then inserted into co-expression vector, pBudCE4.1. The VP1 gene of CAV was then fused to the acmA sequences and the VP2 gene was cloned into the second MCS of the same vector before transformation into Escherichia coli. The expressed recombinant proteins were purified using a His-tag affinity column and mixed with a culture of L. acidophilus. Whole cell ELISA and immunofluorescence assay showed the binding of the recombinant VP1 protein on the surface of the bacterial cells. The lactobacilli cells carrying the CAV VP1 protein were used to immunize specific pathogen-free chickens through the oral route. A moderate level of neutralizing antibody to CAV was detected in the serum of the immunized chickens. A VP1-specific proliferative response was observed in splenocytes of the chickens after oral immunization. The vaccinated groups also showed increased levels of Th1 cytokines interleukin (IL)-2, IL-12, and IFN-γ. These observations suggest that L. acidophilus can be used in the delivery of vaccines to chickens.


Asunto(s)
Virus de la Anemia del Pollo/inmunología , Infecciones por Circoviridae/veterinaria , Vectores Genéticos/genética , Lactobacillus acidophilus/genética , Enfermedades de las Aves de Corral/prevención & control , Animales , Proteínas de la Cápside/administración & dosificación , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Virus de la Anemia del Pollo/genética , Pollos/inmunología , Infecciones por Circoviridae/inmunología , Infecciones por Circoviridae/prevención & control , Infecciones por Circoviridae/virología , Citocinas/inmunología , Expresión Génica , Vectores Genéticos/metabolismo , Inmunización , Lactobacillus acidophilus/metabolismo , Muramidasa/genética , Muramidasa/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes de Fusión/administración & dosificación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Vacunas Virales/inmunología
17.
Vaccines (Basel) ; 9(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466932

RESUMEN

Human norovirus (HuNoV) is the leading cause of nonbacterial gastroenteritis worldwide with the GII.4 genotype accounting for over 80% of infections. The major capsid protein of GII.4 variants is evolving rapidly, resulting in new epidemic variants with altered antigenic potentials that must be considered for the development of an effective vaccine. In this study, we identify and characterize linear blockade B-cell epitopes in HuNoV GII.4. Five unique linear B-cell epitopes, namely P2A, P2B, P2C, P2D, and P2E, were predicted on the surface-exposed regions of the capsid protein. Evolving of the surface-exposed epitopes over time was found to correlate with the emergence of new GII.4 outbreak variants. Molecular dynamic simulation (MD) analysis and molecular docking revealed that amino acid substitutions in the putative epitopes P2B, P2C, and P2D could be associated with immune escape and the appearance of new GII.4 variants by affecting solvent accessibility and flexibility of the antigenic sites and histo-blood group antigens (HBAG) binding. Testing the synthetic peptides in wild-type mice, epitopes P2B (336-355), P2C (367-384), and P2D (390-400) were recognized as GII.4-specific linear blockade epitopes with the blocking rate of 68, 55 and 28%, respectively. Blocking rate was found to increase to 80% using the pooled serum of epitopes P2B and P2C. These data provide a strategy for expanding the broad blockade potential of vaccines for prevention of NoV infection.

18.
iScience ; 24(7): 102802, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34355146

RESUMEN

In this study, we analyzed norovirus (NoV) evolution in sequential samples of six chronically infected patients. The capsid gene was amplified from stool samples, and deep sequencing was performed. The role of amino acid flexibility in structural changes and ligand binding was studied with molecular dynamics (MD) simulations. Concentrations of capsid-specific antibodies increased in sequential sera. Capsid sequences accumulated mutations during chronic infection, particularly in the surface-exposed antigenic epitopes A, D, and E. The number of quasispecies increased in infections lasting for >1 month. Interestingly, high genetic complexity and distances were followed by ongoing NoV replication, whereas lower genetic complexity and distances preceded cure. MD simulation revealed that surface-exposed amino acid substitutions of the P2 domain caused fluctuation of blockade epitopes. In conclusion, the capsid protein accumulates numerous mutations during chronic infection; however, only those on the protein surface change the protein structure substantially and may lead to immune escape.

19.
Braz J Microbiol ; 51(1): 183-187, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31656022

RESUMEN

Noroviruses (NoV) cause the majority of non-bacterial gastroenteritis cases worldwide, with genotype II.4 being the most common. The aim of our study was to quantitate norovirus-specific IgG in immunocompromised patients before and after laboratory-confirmed norovirus infection. A quantitative ELISA was developed by coating ELISA plates with recombinantly expressed P domain of GII.1 capsid protein. After testing mouse sera drawn before and after immunization with GII.1- and GII.4 P domain, sera from GII.1- and GII.4 infected patients were tested. The assay reliably detected preexisting NoV-specific IgG antibodies. Sera drawn after infection showed increased antibody concentrations. Antibodies elicited by GII.1- and GII.4 infections could be detected with coated GII.1 capsid protein. IgG levels remained constant during the first week and then increased in the second week after laboratory diagnosis. The results show that immunocompromised patients elicited IgG responses to NoV infections that could be reliably detected with our quantitative ELISA.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Caliciviridae/inmunología , Huésped Inmunocomprometido , Inmunoglobulina G/sangre , Adulto , Anciano , Anciano de 80 o más Años , Animales , Infecciones por Caliciviridae/virología , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Norovirus
20.
Braz J Microbiol ; 48(2): 286-293, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27998673

RESUMEN

This study was carried out to express human epidermal growth factor (hEGF) in Pichia pastoris GS115. For this aim, the hEGF gene was cloned into the pPIC9K expression vector, and then integrated into P. pastoris by electroporation. ELISA-based assay showed that the amount of hEGF secreted into the medium can be affected by the fermentation conditions especially by culture medium, pH and temperature. The best medium for the optimal hEGF production was BMMY buffered at a pH range of 6.0 and 7.0. The highest amount of hEGF with an average yield of 2.27µg/mL was obtained through an induction of the culture with 0.5% (v/v) methanol for 60h. The artificial neural network (ANN) analysis revealed that changes in both pH and temperature significantly affected the hEGF production with the pH change had slightly higher impact on hEGF production than variations in the temperature.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Clonación Molecular , Medios de Cultivo/química , Ensayo de Inmunoadsorción Enzimática , Factor de Crecimiento Epidérmico/genética , Fermentación , Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Pichia/genética , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA