Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 14(1): 3643, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351079

RESUMEN

Obesity is associated with an increased risk of developing multiple myeloma (MM). The molecular mechanisms causing this association is complex and incompletely understood. Whether obesity affects bone marrow immune cell composition in multiple myeloma is not characterized. Here, we examined the effect of diet-induced obesity on bone marrow immune cell composition and tumor growth in a Vk*MYC (Vk12653) transplant model of multiple myeloma. We find that diet-induced obesity promoted tumor growth in the bone marrow and spleen and reduced the relative number of T and B cells in the bone marrow. Our results suggest that obesity may reduce MM immune surveillance and thus may contribute to increased risk of developing MM.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Médula Ósea/patología , Linfocitos B/patología , Procesos Neoplásicos , Obesidad/patología , Dieta , Células de la Médula Ósea/patología
2.
Eur J Haematol ; 91(5): 399-410, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23952536

RESUMEN

BACKGROUND: c-MET is the tyrosine kinase receptor of the hepatocyte growth factor (HGF). HGF-c-MET signaling is involved in many human malignancies, including multiple myeloma (MM). Recently, multiple agents have been developed directed to interfere at different levels in HGF-c-MET signaling pathway. Nanobodies are therapeutic proteins based on the smallest functional fragments of heavy-chain-only antibodies. In this study, we wanted to determine the anticancer effect of a novel anti-c-MET Nanobody in MM. METHODS: We examined the effects of an anti-c-MET Nanobody on thymidine incorporation, migration, adhesion of MM cells, and osteoblastogenesis in vitro. Furthermore, we investigated the effects of the Nanobody on HGF-dependent c-MET signaling by Western blotting. RESULTS: We show that the anti-c-MET Nanobody effectively inhibited thymidine incorporation of ANBL-6 MM cells via inhibition of an HGF autocrine growth loop and thymidine incorporation in INA-6 MM cells induced by exogenous HGF. HGF-induced migration and adhesion of INA-6 were completely and specifically blocked by the Nanobody. Furthermore, the Nanobody abolished the inhibiting effect of HGF on bone morphogenetic protein-2-induced alkaline phosphatase activity and the mineralization of human mesenchymal stem cells. Finally, we show that the Nanobody reduced phosphorylation of tyrosine residues in c-MET, MAPK, and Akt. We also compared the Nanobody with anti-c-MET monoclonal antibodies and revealed the similar or better effect. CONCLUSIONS: The anti-c-MET Nanobody inhibited MM cell migration, thymidine incorporation, and adhesion, and blocked the HGF-mediated inhibition of osteoblastogenesis. The anti-c-MET Nanobody might represent a novel therapeutic agent in the treatment of MM and other cancers driven by HGF-c-MET signaling.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/farmacología , Humanos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Osteogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/genética , Timidina/metabolismo
3.
Front Cell Dev Biol ; 10: 941542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865628

RESUMEN

A balanced skeletal remodeling process is paramount to staying healthy. The remodeling process can be studied by analyzing osteoclasts differentiated in vitro from mononuclear cells isolated from peripheral blood or from buffy coats. Osteoclasts are highly specialized, multinucleated cells that break down bone tissue. Identifying and correctly quantifying osteoclasts in culture are usually done by trained personnel using light microscopy, which is time-consuming and susceptible to operator biases. Using machine learning with 307 different well images from seven human PBMC donors containing a total of 94,974 marked osteoclasts, we present an efficient and reliable method to quantify human osteoclasts from microscopic images. An open-source, deep learning-based object detection framework called Darknet (YOLOv4) was used to train and test several models to analyze the applicability and generalizability of the proposed method. The trained model achieved a mean average precision of 85.26% with a correlation coefficient of 0.99 with human annotators on an independent test set and counted on average 2.1% more osteoclasts per culture than the humans. Additionally, the trained models agreed more than two independent human annotators, supporting a more reliable and less biased approach to quantifying osteoclasts while saving time and resources. We invite interested researchers to test their datasets on our models to further strengthen and validate the results.

4.
J Immunol ; 182(9): 5672-81, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19380814

RESUMEN

TLR9-dependent signaling in plasmacytoid dendritic cells is a key contributor to innate immune defense to mouse CMV infection. We aimed to study the expression and potential contribution of TLR9 signaling in human CMV (HCMV) infection of primary fibroblasts. HCMV infection strongly induced TLR9 expression in two of three fibroblast types tested. Furthermore, the TLR9 ligand CpG-B induced a strong proviral effect when added shortly after HCMV infection, enhancing virus production and cell viability. However, not all CpG classes displayed proviral activity, and this correlated with their IFN-beta-inducing ability. The proviral effect of CpG-B correlated completely with concurrent viral up-regulation of TLR9 in fibroblasts. Importantly, the timing of CpG addition was a critical parameter; in striking contrast to the proviral effect, CpG addition at the time of infection blocked viral uptake and nearly abolished HCMV production. The contrasting and time-dependent effects of CpG on HCMV infectivity reveal a complex interplay between CpG, TLR9, and HCMV infection. Additionally, the data suggest a potentially harmful role for CpG in the promotion of HCMV infection.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Oligodesoxirribonucleótidos/inmunología , Provirus/inmunología , Adulto , Línea Celular , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/crecimiento & desarrollo , Infecciones por Citomegalovirus/prevención & control , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/virología , Humanos , Recién Nacido , Oligodesoxirribonucleótidos/clasificación , Oligodesoxirribonucleótidos/metabolismo , Provirus/genética , Provirus/crecimiento & desarrollo , Receptor Toll-Like 9/biosíntesis , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/fisiología , Regulación hacia Arriba/genética , Regulación hacia Arriba/inmunología , Replicación Viral/genética , Replicación Viral/inmunología
6.
JBMR Plus ; 4(1): e10247, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31956851

RESUMEN

Multiple myeloma is characterized by accumulation of malignant plasma cells in the bone marrow. Most patients suffer from an osteolytic bone disease, caused by increased bone degradation and reduced bone formation. Bone morphogenetic protein 4 (BMP4) is important for both pre- and postnatal bone formation and induces growth arrest and apoptosis of myeloma cells. BMP4-treatment of myeloma patients could have the potential to reduce tumor growth and restore bone formation. We therefore explored BMP4 gene therapy in a human-mouse model of multiple myeloma where humanized bone scaffolds were implanted subcutaneously in RAG2-/- γC-/-mice. Mice were treated with adeno-associated virus serotype 8 BMP4 vectors (AAV8-BMP4) to express BMP4 in the liver. When mature BMP4 was detectable in the circulation, myeloma cells were injected into the scaffolds and tumor growth was examined by weekly imaging. Strikingly, the tumor burden was reduced in AAV8-BMP4 mice compared with the AAV8-CTRL mice, suggesting that increased circulating BMP4 reduced tumor growth. BMP4-treatment also prevented bone loss in the scaffolds, most likely due to reduced tumor load. To delineate the effects of BMP4 overexpression on bone per se, without direct influence from cancer cells, we examined the unaffected, non-myeloma femurs by µCT. Surprisingly, the AAV8-BMP4 mice had significantly reduced trabecular bone volume, trabecular numbers, as well as significantly increased trabecular separation compared with the AAV8-CTRL mice. There was no difference in cortical bone parameters between the two groups. Taken together, BMP4 gene therapy inhibited myeloma tumor growth, but also reduced the amount of trabecular bone in mice. Our data suggest that care should be taken when considering using BMP4 as a therapeutic agent. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

7.
J Immunother Cancer ; 8(1)2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32409420

RESUMEN

BACKGROUND: PD1/PDL1-directed therapies have been unsuccessful for multiple myeloma (MM), an incurable cancer of plasma cells in the bone marrow (BM). Therefore, other immune checkpoints such as extracellular adenosine and its immunosuppressive receptor should be considered. CD39 and CD73 convert extracellular ATP to adenosine, which inhibits T-cell effector functions via the adenosine receptor A2A (A2AR). We set out to investigate whether blocking the adenosine pathway could be a therapy for MM. METHODS: Expression of CD39 and CD73 on BM cells from patients and T-cell proliferation were determined by flow cytometry and adenosine production by Liquid chromatograpy-mass spectrometry (HPCL/MS). ENTPD1 (CD39) mRNA expression was determined on myeloma cells from patients enrolled in the publicly available CoMMpass study. Transplantable 5T33MM myeloma cells were used to determine the effect of inhibiting CD39, CD73 and A2AR in mice in vivo. RESULTS: Elevated level of adenosine was found in BM plasma of MM patients. Myeloma cells from patients expressed CD39, and high gene expression indicated reduced survival. CD73 was found on leukocytes and stromal cells in the BM. A CD39 inhibitor, POM-1, and an anti-CD73 antibody inhibited adenosine production and reduced T-cell suppression in vitro in coculture of myeloma and stromal cells. Blocking the adenosine pathway in vivo with a combination of Sodium polyoxotungstate (POM-1), anti-CD73, and the A2AR antagonist AZD4635 activated immune cells, increased interferon gamma production, and reduced the tumor load in a murine model of MM. CONCLUSIONS: Our data suggest that the adenosine pathway can be successfully targeted in MM and blocking this pathway could be an alternative to PD1/PDL1 inhibition for MM and other hematological cancers. Inhibitors of the adenosine pathway are available. Some are in clinical trials and they could thus reach MM patients fairly rapidly.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Mieloma Múltiple/patología , Receptor de Adenosina A2A/química , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Pronóstico , Receptor de Adenosina A2A/metabolismo , Tasa de Supervivencia
8.
Biomark Res ; 6: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946468

RESUMEN

Chemerin is a recently discovered adipokine shown to be involved in both inflammatory and metabolic processes. Here, we demonstrate that chemerin serum levels are elevated in patients with multiple myeloma and that it increases with disease progression. We found that chemerin is expressed by stromal cells and preadipocytes, whereas its receptor CCRL2 is expressed by primary myeloma cells, suggesting a paracrine signaling loop between bone marrow stromal cells/adipocytes and myeloma cells. This is the first study exploring chemerin and its receptors in multiple myeloma.

9.
Front Immunol ; 8: 1243, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29042860

RESUMEN

TLR8 is the major endosomal sensor of degraded RNA in human monocytes and macrophages. It has been implicated in the sensing of viruses and more recently also bacteria. We previously identified a TLR8-IFN regulatory factor 5 (IRF5) signaling pathway that mediates IFNß and interleukin-12 (IL-12) induction by Staphylococcus aureus and is antagonized by TLR2. The relative importance of TLR8 for the sensing of various bacterial species is however still unclear. We here compared the role of TLR8 and IRF5 for the sensing of Group B Streptococcus (GBS), S. aureus, and Escherichia coli in human primary monocytes and monocyte-derived macrophages (MDM). GBS induced stronger IFNß and TNF production as well as IRF5 nuclear translocation compared to S. aureus grown to the stationary phase, while S. aureus in exponential growth appeared similarly potent to GBS. Cytokine induction in primary human monocytes by GBS was not dependent on hemolysins, and induction of IFNß and IL-12 as well as IRF5 activation were reduced with TLR2 ligand costimulation. Heat inactivation of GBS reduced IRF5 and NF-kB translocation, while only the viable E. coli activated IRF5. The attenuated stimulation correlated with loss of bacterial RNA integrity. The E. coli-induced IRF5 translocation was not inhibited by TLR2 costimulation, suggesting that IRF5 was activated via a TLR8-independent mechanism. Gene silencing of MDM using siRNA revealed that GBS-induced IFNß, IL-12-p35, and TNF production was dependent on TLR8 and IRF5. In contrast, cytokine induction by E. coli was TLR8 independent but still partly dependent on IRF5. We conclude that TLR8-IRF5 signaling is more important for the sensing of GBS than for stationary grown S. aureus in human primary monocytes and MDM, likely due to reduced resistance of GBS to phagosomal degradation and to a lower production of TLR2 activating lipoproteins. TLR8 does not sense viable E. coli, while IRF5 still contributes to E. coli-induced cytokine production, possibly via a cytosolic nucleic acid sensing mechanism.

10.
Blood Adv ; 1(27): 2656-2666, 2017 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-29296919

RESUMEN

Multiple myeloma (MM) is a hematologic cancer characterized by expansion of malignant plasma cells in the bone marrow. Most patients develop an osteolytic bone disease, largely caused by increased osteoclastogenesis. The myeloma bone marrow is hypoxic, and hypoxia may contribute to MM disease progression, including bone loss. Here we identified interleukin-32 (IL-32) as a novel inflammatory cytokine expressed by a subset of primary MM cells and MM cell lines. We found that high IL-32 gene expression in plasma cells correlated with inferior survival in MM and that IL-32 gene expression was higher in patients with bone disease compared with those without. IL-32 was secreted from MM cells in extracellular vesicles (EVs), and those EVs, as well as recombinant human IL-32, promoted osteoclast differentiation both in vitro and in vivo. The osteoclast-promoting activity of the EVs was IL-32 dependent. Hypoxia increased plasma-cell IL-32 messenger RNA and protein levels in a hypoxia-inducible factor 1α-dependent manner, and high expression of IL-32 was associated with a hypoxic signature in patient samples, suggesting that hypoxia may promote expression of IL-32 in MM cells. Taken together, our results indicate that targeting IL-32 might be beneficial in the treatment of MM bone disease in a subset of patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA