Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant Cell ; 31(11): 2649-2663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31530733

RESUMEN

Plants have evolved two major ways to deal with nearby vegetation or shade: avoidance and tolerance. Moreover, some plants respond to shade in different ways; for example, Arabidopsis (Arabidopsis thaliana) undergoes an avoidance response to shade produced by vegetation, but its close relative Cardamine hirsuta tolerates shade. How plants adopt opposite strategies to respond to the same environmental challenge is unknown. Here, using a genetic strategy, we identified the C. hirsuta slender in shade1 mutants, which produce strongly elongated hypocotyls in response to shade. These mutants lack the phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl elongation when challenged by shade from nearby vegetation. This suppression relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by increased ChPHYA expression and protein accumulation combined with a stronger specific intrinsic repressor activity. We suggest that modulation of photoreceptor activity is a powerful mechanism in nature to achieve physiological variation (shade tolerance versus avoidance) for species to colonize different habitats.


Asunto(s)
Arabidopsis/fisiología , Cardamine/fisiología , Luz , Fitocromo/metabolismo , Plantones/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis , Cardamine/genética , Cardamine/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas/genética , Hipocótilo/metabolismo , Fitocromo/genética , Fitocromo/efectos de la radiación , Fitocromo A/genética , Fitocromo A/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación
2.
New Phytol ; 216(3): 798-813, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28805249

RESUMEN

In plants, perception of vegetation proximity by phytochrome photoreceptors activates a transcriptional network that implements a set of responses to adapt to plant competition, including elongation of stems or hypocotyls. In Arabidopsis thaliana, the homeodomain-leucine zipper (HD-Zip) transcription factor ARABIDOPSIS THALIANA HOMEOBOX 4 (ATHB4) regulates this and other responses, such as leaf polarity. To better understand the shade regulatory transcriptional network, we have carried out structure-function analyses of ATHB4 by overexpressing a series of truncated and mutated forms and analyzing three different responses: hypocotyl response to shade, transcriptional activity and leaf polarity. Our results indicated that ATHB4 has two physically separated molecular activities: that performed by HD-Zip, which is involved in binding to DNA-regulatory elements, and that performed by the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR-associated amphiphilic repression (EAR)-containing N-terminal region, which is involved in protein-protein interaction. Whereas both activities are required to regulate leaf polarity, DNA-binding activity is not required for the regulation of the seedling responses to plant proximity, which indicates that ATHB4 works as a transcriptional cofactor in the regulation of this response. These findings suggest that transcription factors might employ alternative mechanisms of action to regulate different developmental processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Hipocótilo/fisiología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Plantones/fisiología , Factores de Transcripción/química , Factores de Transcripción/genética
3.
J Exp Bot ; 65(11): 2937-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24609653

RESUMEN

The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.


Asunto(s)
Arabidopsis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/efectos de la radiación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genes de Plantas , Hipocótilo/efectos de los fármacos , Hipocótilo/fisiología , Hipocótilo/efectos de la radiación , Ácidos Indolacéticos/farmacología , Luz , Mutación/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reguladores del Crecimiento de las Plantas/farmacología
4.
Methods Mol Biol ; 1564: 39-47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28124245

RESUMEN

Light perception and hormone signaling in plants are likely connected at multiple points. Light conditions, perceived by photoreceptors, control plant responses by altering hormone concentration, tissue sensitivity, or a combination of both. Whereas it is relatively straightforward to assess the light effects on hormone levels, hormone sensitivity is subjected to interpretation. In Arabidopsis thaliana seedlings, hypocotyl length is strongly affected by light conditions. As hypocotyl elongation also depends on brassinosteroids (BRs), assaying this response provides a valuable and easy way to measure the responsiveness of seedlings to BRs and the impact of light. We describe a simple protocol to evaluate the responsiveness of hypocotyls to commercial BRs and/or BR inhibitors under a range of light conditions. These assays can be used to establish whether light affects BR sensitivity or whether BRs affect light sensitivity. Overall, our protocol can be easily applied for deetiolation (under polychromatic or monochromatic light) and simulated shade treatments combined with BR treatments.


Asunto(s)
Arabidopsis/efectos de la radiación , Brasinoesteroides/farmacología , Hipocótilo/efectos de la radiación , Fototransducción/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Esteroides Heterocíclicos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Fungicidas Industriales/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Luz , Periodicidad , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Triazoles/farmacología
5.
PLoS One ; 9(10): e109275, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25333270

RESUMEN

Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Hipocótilo/fisiología , Fitocromo A/genética , Fitocromo B/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Luz , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Plantones/crecimiento & desarrollo , Plantones/efectos de la radiación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA