Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 175(6): 1546-1560.e17, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30500537

RESUMEN

Mammalian folate metabolism is comprised of cytosolic and mitochondrial pathways with nearly identical core reactions, yet the functional advantages of such an organization are not well understood. Using genome-editing and biochemical approaches, we find that ablating folate metabolism in the mitochondria of mammalian cell lines results in folate degradation in the cytosol. Mechanistically, we show that QDPR, an enzyme in tetrahydrobiopterin metabolism, moonlights to repair oxidative damage to tetrahydrofolate (THF). This repair capacity is overwhelmed when cytosolic THF hyperaccumulates in the absence of mitochondrially produced formate, leading to THF degradation. Unexpectedly, we also find that the classic antifolate methotrexate, by inhibiting its well-known target DHFR, causes even more extensive folate degradation in nearly all tested cancer cell lines. These findings shed light on design features of folate metabolism, provide a biochemical basis for clinically observed folate deficiency in QDPR-deficient patients, and reveal a hitherto unknown and unexplored cellular effect of methotrexate.


Asunto(s)
Carbono/metabolismo , Citosol/metabolismo , Formiatos/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Tetrahidrofolatos/metabolismo , Citosol/patología , Células HCT116 , Células HeLa , Humanos , Células MCF-7 , Metotrexato/farmacocinética , Metotrexato/farmacología , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tetrahidrofolato Deshidrogenasa/metabolismo
2.
J Biol Chem ; 293(16): 5821-5833, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29483189

RESUMEN

One-carbon (1C) metabolism is a universal folate-dependent pathway essential for de novo purine and thymidylate synthesis, amino acid interconversion, universal methyl-donor production, and regeneration of redox cofactors. Homozygous deletion of the 1C pathway gene Mthfd1l encoding methylenetetrahydrofolate dehydrogenase (NADP+-dependent) 1-like, which catalyzes mitochondrial formate production from 10-formyltetrahydrofolate, results in 100% penetrant embryonic neural tube defects (NTDs), underscoring the central role of mitochondrially derived formate in embryonic development and providing a mechanistic link between folate and NTDs. However, the specific metabolic processes that are perturbed by Mthfd1l deletion are not known. Here, we performed untargeted metabolomics on whole Mthfd1l-null and wildtype mouse embryos in combination with isotope tracer analysis in mouse embryonic fibroblast (MEF) cell lines to identify Mthfd1l deletion-induced disruptions in 1C metabolism, glycolysis, and the TCA cycle. We found that maternal formate supplementation largely corrects these disruptions in Mthfd1l-null embryos. Serine tracer experiments revealed that Mthfd1l-null MEFs have altered methionine synthesis, indicating that Mthfd1l deletion impairs the methyl cycle. Supplementation of Mthfd1l-null MEFs with formate, hypoxanthine, or combined hypoxanthine and thymidine restored their growth to wildtype levels. Thymidine addition alone was ineffective, suggesting a purine synthesis defect in Mthfd1l-null MEFs. Tracer experiments also revealed lower proportions of labeled hypoxanthine and inosine monophosphate in Mthfd1l-null than in wildtype MEFs, suggesting that Mthfd1l deletion results in increased reliance on the purine salvage pathway. These results indicate that disruptions of mitochondrial 1C metabolism have wide-ranging consequences for many metabolic processes, including those that may not directly interact with 1C metabolism.


Asunto(s)
Aminohidrolasas/genética , Metabolismo Energético , Formiato-Tetrahidrofolato Ligasa/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Redes y Vías Metabólicas , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Mitocondrias/metabolismo , Complejos Multienzimáticos/genética , Defectos del Tubo Neural/genética , Aminohidrolasas/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Ácido Fólico/genética , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/metabolismo , Glucólisis , Metaboloma , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Complejos Multienzimáticos/metabolismo , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología
3.
Proc Natl Acad Sci U S A ; 110(2): 549-54, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23267094

RESUMEN

Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l. These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.


Asunto(s)
Anomalías Múltiples/genética , Aminohidrolasas/genética , Anomalías Craneofaciales/genética , Desarrollo Embrionario/genética , Formiato-Tetrahidrofolato Ligasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Complejos Multienzimáticos/genética , Defectos del Tubo Neural/genética , Aminohidrolasas/deficiencia , Animales , Cartilla de ADN/genética , Desarrollo Embrionario/efectos de los fármacos , Formiato-Tetrahidrofolato Ligasa/deficiencia , Formiatos/administración & dosificación , Formiatos/farmacología , Eliminación de Gen , Genotipo , Immunoblotting , Redes y Vías Metabólicas/fisiología , Metilenotetrahidrofolato Deshidrogenasa (NADP)/deficiencia , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
4.
J Biol Chem ; 289(22): 15507-17, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24733394

RESUMEN

Mammalian mitochondria are able to produce formate from one-carbon donors such as serine, glycine, and sarcosine. This pathway relies on the mitochondrial pool of tetrahydrofolate (THF) and several folate-interconverting enzymes in the mitochondrial matrix. We recently identified MTHFD2L as the enzyme that catalyzes the oxidation of 5,10-methylenetetrahydrofolate (CH2-THF) in adult mammalian mitochondria. We show here that the MTHFD2L enzyme is bifunctional, possessing both CH2-THF dehydrogenase and 5,10-methenyl-THF cyclohydrolase activities. The dehydrogenase activity can use either NAD(+) or NADP(+) but requires both phosphate and Mg(2+) when using NAD(+). The NADP(+)-dependent dehydrogenase activity is inhibited by inorganic phosphate. MTHFD2L uses the mono- and polyglutamylated forms of CH2-THF with similar catalytic efficiencies. Expression of the MTHFD2L transcript is low in early mouse embryos but begins to increase at embryonic day 10.5 and remains elevated through birth. In adults, MTHFD2L is expressed in all tissues examined, with the highest levels observed in brain and lung.


Asunto(s)
Aminohidrolasas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Mitocondrias/enzimología , Complejos Multienzimáticos/metabolismo , Tubo Neural/enzimología , Factores de Edad , Empalme Alternativo/fisiología , Aminohidrolasas/genética , Animales , Femenino , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Ratones , Ratones Endogámicos C57BL , Complejos Multienzimáticos/genética , NAD/metabolismo , NADP/metabolismo , Tubo Neural/embriología , Oxidación-Reducción , Embarazo , Ratas , Especificidad por Sustrato
5.
Birth Defects Res A Clin Mol Teratol ; 100(8): 576-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24985542

RESUMEN

BACKGROUND: Neural tube defects (NTDs) are one of the most common birth defects in humans. Maternal intake of folic acid was linked to prevention of NTDs in the 1970s. This realization led to the establishment of mandatory and/or voluntary food folic acid fortification programs in many countries that have reduced the incidence of NTDs by up to 70% in humans. Despite 40 years of intensive research, the biochemical mechanisms underlying the protective effects of folic acid remain unknown. RESULTS: Recent research reveals a role for mitochondrial folate-dependent one-carbon metabolism in neural tube closure. CONCLUSION: In this article, we review the evidence linking NTDs to aberrant mitochondrial one-carbon metabolism in humans and mouse models. The potential of formate, a product of mitochondrial one-carbon metabolism, to prevent NTDs is also discussed.


Asunto(s)
Ácido Fólico/uso terapéutico , Mitocondrias/enzimología , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/prevención & control , Tubo Neural/embriología , Aminohidrolasas/genética , Aminohidrolasas/metabolismo , Animales , Suplementos Dietéticos , Ácido Fólico/sangre , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/genética , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/farmacología , Humanos , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Antígenos de Histocompatibilidad Menor , Mitocondrias/metabolismo , Modelos Animales , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Tubo Neural/enzimología
6.
Biochemistry ; 52(9): 1603-10, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23387521

RESUMEN

Autoinducer inactivator A (AiiA) is a metal-dependent N-acyl homoserine lactone hydrolase that displays broad substrate specificity but shows a preference for substrates with long N-acyl substitutions. Previously, crystal structures of AiiA in complex with the ring-opened product N-hexanoyl-l-homoserine revealed binding interactions near the metal center but did not identify a binding pocket for the N-acyl chains of longer substrates. Here we report the crystal structure of an AiiA mutant, F107W, determined in the presence and absence of N-decanoyl-l-homoserine. F107 is located in a hydrophobic cavity adjacent to the previously identified ligand binding pocket, and the F107W mutation results in the formation of an unexpected interaction with the ring-opened product. Notably, the structure reveals a previously unidentified hydrophobic binding pocket for the substrate's N-acyl chain. Two aromatic residues, F64 and F68, form a hydrophobic clamp, centered around the seventh carbon in the product-bound structure's decanoyl chain, making an interaction that would also be available for longer substrates, but not for shorter substrates. Steady-state kinetics using substrates of various lengths with AiiA bearing mutations at the hydrophobic clamp, including insertion of a redox-sensitive cysteine pair, confirms the importance of this hydrophobic feature for substrate preference. Identifying the specificity determinants of AiiA will aid the development of more selective quorum-quenching enzymes as tools and as potential therapeutics.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Bacillus thuringiensis/enzimología , Homoserina/análogos & derivados , Amidohidrolasas/genética , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Cristalografía por Rayos X , Homoserina/metabolismo , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Mutación Puntual , Conformación Proteica , Percepción de Quorum , Especificidad por Sustrato
7.
J Biol Chem ; 286(7): 5166-74, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21163947

RESUMEN

Previous studies in our laboratory showed that isolated, intact adult rat liver mitochondria are able to oxidize the 3-carbon of serine and the N-methyl carbon of sarcosine to formate without the addition of any other cofactors or substrates. Conversion of these 1-carbon units to formate requires several folate-interconverting enzymes in mitochondria. The enzyme(s) responsible for conversion of 5,10-methylene-tetrahydrofolate (CH(2)-THF) to 10-formyl-THF in adult mammalian mitochondria are currently unknown. A new mitochondrial CH(2)-THF dehydrogenase isozyme, encoded by the MTHFD2L gene, has now been identified. The recombinant protein exhibits robust NADP(+)-dependent CH(2)-THF dehydrogenase activity when expressed in yeast. The enzyme is localized to mitochondria when expressed in CHO cells and behaves as a peripheral membrane protein, tightly associated with the matrix side of the mitochondrial inner membrane. The MTHFD2L gene is subject to alternative splicing and is expressed in adult tissues in humans and rodents. This CH(2)-THF dehydrogenase isozyme thus fills the remaining gap in the pathway from CH(2)-THF to formate in adult mammalian mitochondria.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Metilenotetrahidrofolato Deshidrogenasa (NADP)/biosíntesis , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Empalme Alternativo/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Isoenzimas/biosíntesis , Isoenzimas/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Especificidad de Órganos/fisiología , Ratas , Ratas Sprague-Dawley , Tetrahidrofolatos/metabolismo
8.
Birth Defects Res ; 111(19): 1520-1534, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31518072

RESUMEN

BACKGROUND: Periconceptional intake of supplemental folic acid can reduce the incidence of neural tube defects by as much as 70%, but the mechanisms by which folic acid supports cellular processes during neural tube closure are unknown. The mitochondrial 10-formyl-tetrahydrofolate synthetase MTHFD1L catalyzes production of formate, thus generating one-carbon units for cytoplasmic processes. Deletion of Mthfd1l causes embryonic lethality, developmental delay, and neural tube defects in mice. METHODS: To investigate the role of mitochondrial one-carbon metabolism during cranial neural tube closure, we have analyzed cellular morphology and function in neural tissues in Mthfd1l knockout embryos. RESULTS: The head mesenchyme showed significantly lower cellular density in Mthfd1l nullizygous embryos compared to wildtype embryos during the process of neural tube closure. Apoptosis and neural crest cell specification were not affected by deletion of Mthfd1l. Sections from the cranial region of Mthfd1l knockout embryos exhibited decreased cellular proliferation, but only after completion of neural tube closure. Supplementation of pregnant dams with formate improved mesenchymal density and corrected cell proliferation in the nullizygous embryos. CONCLUSIONS: Deletion of Mthfd1l causes decreased density in the cranial mesenchyme and this defect is improved with formate supplementation. This study reveals a mechanistic link between folate-dependent mitochondrially produced formate, head mesenchyme formation and neural tube defects.


Asunto(s)
Formiato-Tetrahidrofolato Ligasa/genética , Meteniltetrahidrofolato Ciclohidrolasa/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Enzimas Multifuncionales/genética , Defectos del Tubo Neural/genética , Animales , Embrión de Mamíferos/metabolismo , Femenino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Formiato-Tetrahidrofolato Ligasa/metabolismo , Formiatos/metabolismo , Masculino , Mesodermo/metabolismo , Meteniltetrahidrofolato Ciclohidrolasa/metabolismo , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Enzimas Multifuncionales/metabolismo , Cresta Neural/metabolismo , Defectos del Tubo Neural/metabolismo , Neurulación , Eliminación de Secuencia
9.
Biochemistry ; 47(29): 7706-14, 2008 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-18627129

RESUMEN

Enzymes capable of hydrolyzing N-acyl- l-homoserine lactones (AHLs) used in some bacterial quorum-sensing pathways are of considerable interest for their ability to block undesirable phenotypes. Most known AHL hydrolases that catalyze ring opening (AHL lactonases) are members of the metallo-beta-lactamase enzyme superfamily and rely on a dinuclear zinc site for catalysis and stability. Here we report the three-dimensional structures of three product complexes formed with the AHL lactonase from Bacillus thuringiensis. Structures of the lactonase bound with two different concentrations of the ring-opened product of N-hexanoyl- l-homoserine lactone are determined at 0.95 and 1.4 A resolution and exhibit different product configurations. A structure of the ring-opened product of the non-natural N-hexanoyl- l-homocysteine thiolactone at 1.3 A resolution is also determined. On the basis of these product-bound structures, a substrate-binding model is presented that differs from previous proposals. Additionally, the proximity of the product to active-site residues and observed changes in protein conformation and metal coordination provide insight into the catalytic mechanism of this quorum-quenching metalloenzyme.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/química , Hidrolasas de Éster Carboxílico/química , Percepción de Quorum , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular
10.
Biochemistry ; 47(29): 7715-25, 2008 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-18627130

RESUMEN

The N-acyl- l-homoserine lactone hydrolases (AHL lactonases) have attracted considerable attention because of their ability to quench AHL-mediated quorum-sensing pathways in Gram-negative bacteria and because of their relation to other enzymes in the metallo-beta-lactamase superfamily. To elucidate the detailed catalytic mechanism of AHL lactonase, mutations are made on residues that presumably contribute to substrate binding and catalysis. Steady-state kinetic studies are carried out on both the wild-type and mutant enzymes using a spectrum of substrates. Two mutations, Y194F and D108N, present significant effects on the overall catalysis. On the basis of a high-resolution structural model of the enzyme-product complex, a hybrid quantum mechanical/molecular mechanical method is used to model the substrate binding orientation and to probe the effect of the Y194F mutation. Combining all experimental and computational results, we propose a detailed mechanism for the ring-opening hydrolysis of AHL substrates as catalyzed by the AHL lactonase from Bacillus thuringiensis. Several features of the mechanism that are also found in related enzymes are discussed and may help to define an evolutionary thread that connects the hydrolytic enzymes of this mechanistically diverse superfamily.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Percepción de Quorum , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Simulación por Computador , Cinética , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida
11.
Cancer Metab ; 5: 11, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225823

RESUMEN

BACKGROUND: Folate-dependent one-carbon metabolism provides one-carbon units for several biological processes. This pathway is highly compartmentalized in eukaryotes, with the mitochondrial pathway producing formate for use in cytoplasmic processes. The mitochondrial enzyme MTHFD2 has been reported to use NAD+ as a cofactor while the isozyme MTHFD2L utilizes NAD+ or NADP+ at physiologically relevant conditions. Because MTHFD2 is highly expressed in many cancer types, we sought to determine the cofactor preference of this enzyme. RESULTS: Kinetic analysis shows that purified human MTHFD2 exhibits dual redox cofactor specificity, utilizing either NADP+ or NAD+ with the more physiologically relevant pentaglutamate folate substrate. CONCLUSION: These results show that the mitochondrial folate pathway isozymes MTHFD2 and MTHFD2L both exhibit dual redox cofactor specificity. Our kinetic analysis clearly supports a role for MTHFD2 in mitochondrial NADPH production, indicating that this enzyme is likely responsible for mitochondrial production of both NADH and NADPH in rapidly proliferating cells.

13.
Biochemistry ; 46(42): 11789-99, 2007 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17900178

RESUMEN

N-Acyl-l-homoserine lactone (AHL) mediated quorum-sensing regulates virulence factor production in a variety of Gram-negative bacteria. Proteins capable of degrading these autoinducers have been called "quorum-quenching" enzymes, can block many quorum-sensing dependent phenotypes, and represent potentially useful reagents for clinical, agricultural, and industrial applications. The most characterized quorum-quenching enzymes to date are the AHL lactonases, which are metalloproteins that belong to the metallo-beta-lactamase superfamily. Here, we report the cloning, heterologous expression, purification, metal content, substrate specificity, and three-dimensional structure of AiiB, an AHL lactonase from Agrobacterium tumefaciens. Much like a homologous AHL lactonase from Bacillus thuringiensis, AiiB appears to be a metal-dependent AHL lactonase with broad specificity. A phosphate dianion is bound to the dinuclear zinc site and the active-site structure suggests specific mechanistic roles for an active site tyrosine and aspartate. To our knowledge, this is the second representative structure of an AHL lactonase and the first of an AHL lactonase from a microorganism that also produces AHL autoinducers. This work should help elucidate the hydrolytic ring-opening mechanism of this family of enzymes and also facilitate the design of more effective quorum-quenching catalysts.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/fisiología , Percepción de Quorum , Transducción de Señal , Secuencia de Aminoácidos , Sitios de Unión , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Clonación Molecular , Dimerización , Electroforesis en Gel de Poliacrilamida , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Zinc/análisis , Zinc/química
14.
Biochemistry ; 45(44): 13385-93, 2006 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-17073460

RESUMEN

Lactone-hydrolyzing enzymes derived from some Bacillus species are capable of disrupting quorum sensing in bacteria that use N-acyl-l-homoserine lactones (AHLs) as intercellular signaling molecules. Despite the promise of these quorum-quenching enzymes as therapeutic and anti-biofouling agents, the ring opening mechanism and the role of metal ions in catalysis have not been elucidated. Labeling studies using (18)O, (2)H, and the AHL lactonase from Bacillus thuringiensis implicate an addition-elimination pathway for ring opening in which a solvent-derived oxygen is incorporated into the product carboxylate, identifying the alcohol as the leaving group. (1)H NMR is used to show that metal binding is required to maintain proper folding. A thio effect is measured for hydrolysis of N-hexanoyl-l-homoserine lactone and the corresponding thiolactone by AHL lactonase disubstituted with alternative metal ions, including Mn(2+), Co(2+), Zn(2+), and Cd(2+). The magnitude of the thio effect on k(cat) values and the thiophilicity of the metal ion substitutions vary in parallel and are consistent with a kinetically significant interaction between the leaving group and the active site metal center during turnover. X-ray absorption spectroscopy confirms that dicobalt substitution does not result in large structural perturbations at the active site. Finally, substitution of the dinuclear metal site with Cd(2+) results in a greatly enhanced catalyst that can hydrolyze AHLs 1600-24000-fold faster than other reported quorum-quenching enzymes.


Asunto(s)
Amidohidrolasas/metabolismo , Bacillus thuringiensis/enzimología , Percepción de Quorum , Cinética , Metales/metabolismo , Resonancia Magnética Nuclear Biomolecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA