Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 110(2): 349-358, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702127

RESUMEN

The coefficient of determination (R2) is a well-established measure to indicate the predictive ability of polygenic scores (PGSs). However, the sampling variance of R2 is rarely considered so that 95% confidence intervals (CI) are not usually reported. Moreover, when comparisons are made between PGSs based on different discovery samples, the sampling covariance of R2 is required to test the difference between them. Here, we show how to estimate the variance and covariance of R2 values to assess the 95% CI and p value of the R2 difference. We apply this approach to real data calculating PGSs in 28,880 European participants derived from UK Biobank (UKBB) and Biobank Japan (BBJ) GWAS summary statistics for cholesterol and BMI. We quantify the significantly higher predictive ability of UKBB PGSs compared to BBJ PGSs (p value 7.6e-31 for cholesterol and 1.4e-50 for BMI). A joint model of UKBB and BBJ PGSs significantly improves the predictive ability, compared to a model of UKBB PGS only (p value 3.5e-05 for cholesterol and 1.3e-28 for BMI). We also show that the predictive ability of regulatory SNPs is significantly enriched over non-regulatory SNPs for cholesterol (p value 8.9e-26 for UKBB and 3.8e-17 for BBJ). We suggest that the proposed approach (available in R package r2redux) should be used to test the statistical significance of difference between pairs of PGSs, which may help to draw a correct conclusion about the comparative predictive ability of PGSs.


Asunto(s)
Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Estudio de Asociación del Genoma Completo
2.
Genet Epidemiol ; 48(2): 85-100, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38303123

RESUMEN

The use of polygenic risk score (PRS) models has transformed the field of genetics by enabling the prediction of complex traits and diseases based on an individual's genetic profile. However, the impact of genotype-environment interaction (GxE) on the performance and applicability of PRS models remains a crucial aspect to be explored. Currently, existing genotype-environment interaction polygenic risk score (GxE PRS) models are often inappropriately used, which can result in inflated type 1 error rates and compromised results. In this study, we propose novel GxE PRS models that jointly incorporate additive and interaction genetic effects although also including an additional quadratic term for nongenetic covariates, enhancing their robustness against model misspecification. Through extensive simulations, we demonstrate that our proposed models outperform existing models in terms of controlling type 1 error rates and enhancing statistical power. Furthermore, we apply the proposed models to real data, and report significant GxE effects. Specifically, we highlight the impact of our models on both quantitative and binary traits. For quantitative traits, we uncover the GxE modulation of genetic effects on body mass index by alcohol intake frequency. In the case of binary traits, we identify the GxE modulation of genetic effects on hypertension by waist-to-hip ratio. These findings underscore the importance of employing a robust model that effectively controls type 1 error rates, thus preventing the occurrence of spurious GxE signals. To facilitate the implementation of our approach, we have developed an innovative R software package called GxEprs, specifically designed to detect and estimate GxE effects. Overall, our study highlights the importance of accurate GxE modeling and its implications for genetic risk prediction, although providing a practical tool to support further research in this area.


Asunto(s)
Interacción Gen-Ambiente , Puntuación de Riesgo Genético , Humanos , Modelos Genéticos , Fenotipo , Factores de Riesgo
3.
Hum Genet ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902498

RESUMEN

Polygenic risk scores (PRSs) enable early prediction of disease risk. Evaluating PRS performance for binary traits commonly relies on the area under the receiver operating characteristic curve (AUC). However, the widely used DeLong's method for comparative significance tests suffer from limitations, including computational time and the lack of a one-to-one mapping between test statistics based on AUC and R 2 . To overcome these limitations, we propose a novel approach that leverages the Delta method to derive the variance and covariance of AUC values, enabling a comprehensive and efficient comparative significance test. Our approach offers notable advantages over DeLong's method, including reduced computation time (up to 150-fold), making it suitable for large-scale analyses and ideal for integration into machine learning frameworks. Furthermore, our method allows for a direct one-to-one mapping between AUC and R 2 values for comparative significance tests, providing enhanced insights into the relationship between these measures and facilitating their interpretation. We validated our proposed approach through simulations and applied it to real data comparing PRSs for diabetes and coronary artery disease (CAD) prediction in a cohort of 28,880 European individuals. The PRSs were derived using genome-wide association study summary statistics from two distinct sources. Our approach enabled a comprehensive and informative comparison of the PRSs, shedding light on their respective predictive abilities for diabetes and CAD. This advancement contributes to the assessment of genetic risk factors and personalized disease prediction, supporting better healthcare decision-making.

4.
Hum Genet ; 143(5): 635-648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38536467

RESUMEN

While cholesterol is essential, a high level of cholesterol is associated with the risk of cardiovascular diseases. Genome-wide association studies (GWASs) have proven successful in identifying genetic variants that are linked to cholesterol levels, predominantly in white European populations. However, the extent to which genetic effects on cholesterol vary across different ancestries remains largely unexplored. Here, we estimate cross-ancestry genetic correlation to address questions on how genetic effects are shared across ancestries. We find significant genetic heterogeneity between ancestries for cholesterol traits. Furthermore, we demonstrate that single nucleotide polymorphisms (SNPs) with concordant effects across ancestries for cholesterol are more frequently found in regulatory regions compared to other genomic regions. Indeed, the positive genetic covariance between ancestries is mostly driven by the effects of the concordant SNPs, whereas the genetic heterogeneity is attributed to the discordant SNPs. We also show that the predictive ability of the concordant SNPs is significantly higher than the discordant SNPs in the cross-ancestry polygenic prediction. The list of concordant SNPs for cholesterol is available in GWAS Catalog. These findings have relevance for the understanding of shared genetic architecture across ancestries, contributing to the development of clinical strategies for polygenic prediction of cholesterol in cross-ancestral settings.


Asunto(s)
Colesterol , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Humanos , Colesterol/sangre , Colesterol/genética , Herencia Multifactorial/genética , Población Blanca/genética
5.
Nat Commun ; 14(1): 722, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759513

RESUMEN

Cross-ancestry genetic correlation is an important parameter to understand the genetic relationship between two ancestry groups. However, existing methods cannot properly account for ancestry-specific genetic architecture, which is diverse across ancestries, producing biased estimates of cross-ancestry genetic correlation. Here, we present a method to construct a genomic relationship matrix (GRM) that can correctly account for the relationship between ancestry-specific allele frequencies and ancestry-specific allelic effects. Through comprehensive simulations, we show that the proposed method outperforms existing methods in the estimations of SNP-based heritability and cross-ancestry genetic correlation. The proposed method is further applied to anthropometric and other complex traits from the UK Biobank data across ancestry groups. For obesity, the estimated genetic correlation between African and European ancestry cohorts is significantly different from unity, suggesting that obesity is genetically heterogenous between these two ancestries.


Asunto(s)
Antropometría , Genética de Población , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Población Negra/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Reino Unido
6.
Front Genet ; 14: 1104906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359380

RESUMEN

The H-matrix best linear unbiased prediction (HBLUP) method has been widely used in livestock breeding programs. It can integrate all information, including pedigree, genotypes, and phenotypes on both genotyped and non-genotyped individuals into one single evaluation that can provide reliable predictions of breeding values. The existing HBLUP method requires hyper-parameters that should be adequately optimised as otherwise the genomic prediction accuracy may decrease. In this study, we assess the performance of HBLUP using various hyper-parameters such as blending, tuning, and scale factor in simulated and real data on Hanwoo cattle. In both simulated and cattle data, we show that blending is not necessary, indicating that the prediction accuracy decreases when using a blending hyper-parameter <1. The tuning process (adjusting genomic relationships accounting for base allele frequencies) improves prediction accuracy in the simulated data, confirming previous studies, although the improvement is not statistically significant in the Hanwoo cattle data. We also demonstrate that a scale factor, α, which determines the relationship between allele frequency and per-allele effect size, can improve the HBLUP accuracy in both simulated and real data. Our findings suggest that an optimal scale factor should be considered to increase prediction accuracy, in addition to blending and tuning processes, when using HBLUP.

7.
Transl Anim Sci ; 6(3): txac072, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35813665

RESUMEN

A study was carried out to know the impact of protein supplementation on fertility and expressions of the fertility gene BMP1R. Three International Organization for Standardization (ISO), isocaloric but different levels of protein supplement ration (11.70% crude protein [CP] for control/To, 12.99% CP for T1, and 13.86% CP for T2) were fed to three different groups of sheep. DNA was extracted from the whole blood sample for polymerase chain reaction (PCR) of the BMP1R fertility gene, and purified PCR products were sequenced by a Sanger sequencer. Sequence alignment, pair, and multi-alignment comparison of the BMP1R gene of the species were done with MEGA6. The semen volume (1.0 mL), sperm counts (4.2 × 107 million), and percentage of normal (94.3%) and viable sperm (3.7%) were higher in treatment 2 than in the other two groups. The semen volume (1.0 mL), sperm counts (4.2 × 107 million), and the percentage of normal (94.3%) and viable sperm (3.7%) were higher in treatment 2 than in the other two groups. Ewes treated with supplemented, protein concentrate reached the conception at an earlier age (treatment 1, 9.5 ±â€…0.16 mo and treatment 2, 10.3 ±â€…0.04 mo) than control (9.8 ±â€…0.15 mo). The lambing interval varied, from 198 to 202 d. Lamb's birth weights in three treated groups were ranging from 1.2 to 1.39 kg. The designated sequences of BMP1R gene revealed 100% homology with the sequence of Kazakh sheep. The present study indicated that the influence of nutrition on reproductive performance and genomic study will be helpful for the genetic improvement of low-productive sheep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA