Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 150(19)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37796037

RESUMEN

Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.


Asunto(s)
Oído Interno , Animales , Humanos , Oído Interno/metabolismo , Células Ciliadas Auditivas , Organoides , Células Cultivadas , Diferenciación Celular/genética
2.
PLoS Biol ; 21(7): e3002112, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37467291

RESUMEN

Viruses have evolved the ability to bind and enter cells through interactions with a wide variety of cell macromolecules. We engineered peptide-modified adeno-associated virus (AAV) capsids that transduce the brain through the introduction of de novo interactions with 2 proteins expressed on the mouse blood-brain barrier (BBB), LY6A or LY6C1. The in vivo tropisms of these capsids are predictable as they are dependent on the cell- and strain-specific expression of their target protein. This approach generated hundreds of capsids with dramatically enhanced central nervous system (CNS) tropisms within a single round of screening in vitro and secondary validation in vivo thereby reducing the use of animals in comparison to conventional multi-round in vivo selections. The reproducible and quantitative data derived via this method enabled both saturation mutagenesis and machine learning (ML)-guided exploration of the capsid sequence space. Notably, during our validation process, we determined that nearly all published AAV capsids that were selected for their ability to cross the BBB in mice leverage either the LY6A or LY6C1 protein, which are not present in primates. This work demonstrates that AAV capsids can be directly targeted to specific proteins to generate potent gene delivery vectors with known mechanisms of action and predictable tropisms.


Asunto(s)
Barrera Hematoencefálica , Cápside , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Cápside/metabolismo , Vectores Genéticos , Sistema Nervioso Central/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Dependovirus/genética , Dependovirus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA