Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
EMBO J ; 40(16): e106540, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34121210

RESUMEN

Dendritic cells (DC) subsets, like Langerhans cells (LC), are immune cells involved in pathogen sensing. They express specific antimicrobial cellular factors that are able to restrict infection and limit further pathogen transmission. Here, we identify the alarmin S100A9 as a novel intracellular antiretroviral factor expressed in human monocyte-derived and skin-derived LC. The intracellular expression of S100A9 is decreased upon LC maturation and inversely correlates with enhanced susceptibility to HIV-1 infection of LC. Furthermore, silencing of S100A9 in primary human LC relieves HIV-1 restriction while ectopic expression of S100A9 in various cell lines promotes intrinsic resistance to both HIV-1 and MLV infection by acting on reverse transcription. Mechanistically, the intracellular expression of S100A9 alters viral capsid uncoating and reverse transcription. S100A9 also shows potent inhibitory effect against HIV-1 and MMLV reverse transcriptase (RTase) activity in vitro in a divalent cation-dependent manner. Our findings uncover an unexpected intracellular function of the human alarmin S100A9 in regulating antiretroviral immunity in Langerhans cells.


Asunto(s)
Alarminas/genética , Calgranulina B/genética , VIH-1/fisiología , Células de Langerhans/virología , Virus de la Leucemia Murina de Moloney/fisiología , Infecciones por Retroviridae/prevención & control , Animales , Linfocitos T CD4-Positivos/inmunología , Línea Celular , Cricetulus , VIH-1/genética , Interacciones Huésped-Patógeno , Humanos , Células de Langerhans/inmunología , Leucemia Experimental/prevención & control , Ratones , Virus de la Leucemia Murina de Moloney/genética , Transcripción Reversa , Factor de Crecimiento Transformador beta/inmunología , Infecciones Tumorales por Virus/prevención & control , Replicación Viral
2.
J Biol Chem ; 299(1): 102747, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36436557

RESUMEN

Myxovirus resistance protein 1 (MX1) and MX2 are homologous, dynamin-like large GTPases, induced upon interferon exposure. Human MX1 (HsMX1) is known to inhibit many viruses, including influenza A virus, by likely acting at various steps of their life cycles. Despite decades of studies, the mechanism(s) of action with which MX1 proteins manage to inhibit target viruses is not fully understood. MX1 proteins are mechano-enzymes and share a similar organization to dynamin, with a GTPase domain and a carboxy-terminal stalk domain, connected by a bundle signaling element. These three elements are known to be essential for antiviral activity. HsMX1 has two unstructured regions, the L4 loop, also essential for antiviral activity, and a short amino (N)-terminal region, which greatly varies between MX1 proteins of different species. The role of this N-terminal domain in antiviral activity is not known. Herein, using mutagenesis, imaging, and biochemical approaches, we demonstrate that the N-terminal domain of HsMX1 is essential for antiviral activity against influenza A virus, Vesicular Stomatitis Virus, and La Crosse virus. Furthermore, we pinpoint a highly conserved leucine within this region, which is absolutely crucial for human, mouse, and bat MX1 protein antiviral activity. Importantly, mutation of this leucine does not compromise GTPase activity or oligomerization capabilities but does modify MX1 protein subcellular localization. The discovery of this essential and highly conserved residue defines this region as key for antiviral activity and may reveal insights as to the mechanism(s) of action of MX1 proteins.


Asunto(s)
Virus de la Influenza A , Proteínas de Resistencia a Mixovirus , Virus ARN , Animales , Humanos , Ratones , Antivirales/farmacología , Antivirales/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Leucina , Proteínas de Resistencia a Mixovirus/genética , Proteínas de Resistencia a Mixovirus/metabolismo , Proteínas/metabolismo , Virus ARN/metabolismo , Virus ARN/patogenicidad
3.
EMBO Rep ; 23(11): e54061, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36161446

RESUMEN

Genome-wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV-1. Depletion of endogenous DDX42 increases HIV-1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV-1 infection, whereas expression of a dominant-negative mutant increases infection. Importantly, DDX42 also restricts LINE-1 retrotransposition and infection with other retroviruses and positive-strand RNA viruses, including CHIKV and SARS-CoV-2. However, DDX42 does not impact the replication of several negative-strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA-seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross-linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV-1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.


Asunto(s)
ARN Helicasas DEAD-box , VIH-1 , Virus ARN Monocatenarios Positivos , Replicación Viral , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , VIH-1/fisiología , Virus ARN Monocatenarios Positivos/fisiología , SARS-CoV-2/fisiología
5.
PLoS Pathog ; 17(2): e1009340, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596274

RESUMEN

Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection.


Asunto(s)
Antivirales/administración & dosificación , Retículo Endoplásmico/patología , Interacciones Huésped-Patógeno , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Retículo Endoplásmico/virología , Humanos , Inmunidad Innata , Gripe Humana/patología , Gripe Humana/virología , Mitocondrias/patología , Mitocondrias/virología , Replicación Viral
6.
J Virol ; 95(8)2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33514628

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), which ranges from mild respiratory symptoms to acute respiratory distress syndrome, and death in the most severe cases. Immune dysregulation with altered innate cytokine responses is thought to contribute to disease severity. Here, we characterized in depth host cell responses against SARS-CoV-2 in primary human airway epithelia (HAE) and immortalized cell lines. Our results demonstrate that primary HAE and model cells elicit a robust induction of type I and III interferons (IFNs). Importantly, we show for the first time that melanoma differentiation associated gene (MDA)-5 is the main sensor of SARS-CoV-2 in lung cells. IFN exposure strongly inhibited viral replication and de novo production of infectious virions. However, despite high levels of IFNs produced in response to SARS-CoV-2 infection, the IFN response was unable to control viral replication in lung cells, contrary to what was previously reported in intestinal epithelial cells. Altogether, these results highlight the complex and ambiguous interplay between viral replication and the timing of IFN responses.IMPORTANCE Mammalian cells express sensors able to detect specific features of pathogens and induce the interferon response, which is one of the first line of defenses against viruses and help controlling viral replication. The mechanisms and impact of SARS-CoV-2 sensing in lung epithelial cells remained to be deciphered. In this study, we report that despite a high production of type I and III interferons specifically induced by MDA-5-mediated sensing of SARS-CoV-2, primary and immortalized lung epithelial cells are unable to control viral replication. However, exogenous interferons potently inhibited replication, if provided early upon viral exposure. A better understanding of the ambiguous interplay between the interferon response and SARS-CoV-2 replication is essential to guide future therapeutical interventions.

7.
J Chem Inf Model ; 62(12): 3107-3122, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35754360

RESUMEN

Emerging SARS-CoV-2 variants raise concerns about our ability to withstand the Covid-19 pandemic, and therefore, understanding mechanistic differences of those variants is crucial. In this study, we investigate disparities between the SARS-CoV-2 wild type and five variants that emerged in late 2020, focusing on the structure and dynamics of the spike protein interface with the human angiotensin-converting enzyme 2 (ACE2) receptor, by using crystallographic structures and extended analysis of microsecond molecular dynamics simulations. Dihedral angle principal component analysis (PCA) showed the strong similarities in the spike receptor binding domain (RBD) dynamics of the Alpha, Beta, Gamma, and Delta variants, in contrast with those of WT and Epsilon. Dynamical perturbation networks and contact PCA identified the peculiar interface dynamics of the Delta variant, which cannot be directly imputable to its specific L452R and T478K mutations since those residues are not in direct contact with the human ACE2 receptor. Our outcome shows that in the Delta variant the L452R and T478K mutations act synergistically on neighboring residues to provoke drastic changes in the spike/ACE2 interface; thus a singular mechanism of action eventually explains why it dominated over preceding variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Humanos , Simulación de Dinámica Molecular , Mutación , Pandemias , Unión Proteica , SARS-CoV-2/genética
8.
Nature ; 529(7584): 101-4, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738596

RESUMEN

Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.


Asunto(s)
Proteínas Aviares/química , Proteínas Aviares/metabolismo , Especificidad del Huésped , Virus de la Influenza A/enzimología , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares/deficiencia , Línea Celular , Pollos/virología , Cricetinae , Cricetulus , Perros , Evolución Molecular , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Subtipo H5N1 del Virus de la Influenza A/enzimología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/enzimología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/fisiología , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas Nucleares , Proteínas de Unión al ARN , ARN Polimerasa Dependiente del ARN/genética , Especificidad de la Especie , Transcripción Genética , Proteínas Virales/genética , Replicación Viral
9.
Nature ; 502(7472): 559-62, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24048477

RESUMEN

Animal cells harbour multiple innate effector mechanisms that inhibit virus replication. For the pathogenic retrovirus human immunodeficiency virus type 1 (HIV-1), these include widely expressed restriction factors, such as APOBEC3 proteins, TRIM5-α, BST2 (refs 4, 5) and SAMHD1 (refs 6, 7), as well as additional factors that are stimulated by type 1 interferon (IFN). Here we use both ectopic expression and gene-silencing experiments to define the human dynamin-like, IFN-induced myxovirus resistance 2 (MX2, also known as MXB) protein as a potent inhibitor of HIV-1 infection and as a key effector of IFN-α-mediated resistance to HIV-1 infection. MX2 suppresses infection by all HIV-1 strains tested, has equivalent or reduced effects on divergent simian immunodeficiency viruses, and does not inhibit other retroviruses such as murine leukaemia virus. The Capsid region of the viral Gag protein dictates susceptibility to MX2, and the block to infection occurs at a late post-entry step, with both the nuclear accumulation and chromosomal integration of nascent viral complementary DNA suppressed. Finally, human MX1 (also known as MXA), a closely related protein that has long been recognized as a broadly acting inhibitor of RNA and DNA viruses, including the orthomyxovirus influenza A virus, does not affect HIV-1, whereas MX2 is ineffective against influenza virus. MX2 is therefore a cell-autonomous, anti-HIV-1 resistance factor whose purposeful mobilization may represent a new therapeutic approach for the treatment of HIV/AIDS.


Asunto(s)
Infecciones por VIH/prevención & control , Infecciones por VIH/virología , VIH-1/fisiología , Interferones/inmunología , Proteínas de Resistencia a Mixovirus/metabolismo , Línea Celular , Núcleo Celular/genética , Núcleo Celular/virología , Células Cultivadas , Infecciones por VIH/inmunología , Infecciones por VIH/metabolismo , VIH-1/clasificación , VIH-1/enzimología , VIH-1/genética , Humanos , Proteínas de Resistencia a Mixovirus/deficiencia , Proteínas de Resistencia a Mixovirus/genética , ARN Viral/biosíntesis , ARN Viral/genética , ARN Viral/metabolismo , Transcripción Reversa/genética , Especificidad de la Especie , Especificidad por Sustrato , Integración Viral , Replicación Viral
12.
J Virol ; 88(16): 9017-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899177

RESUMEN

UNLABELLED: The myxovirus resistance 2 (MX2) protein of humans has been identified recently as an interferon (IFN)-inducible inhibitor of human immunodeficiency virus type 1 (HIV-1) that acts at a late postentry step of infection to prevent the nuclear accumulation of viral cDNA (C. Goujon et al., Nature 502:559-562, 2013, http://dx.doi.org/10.1038/nature12542; M. Kane et al., Nature 502:563-566, 2013, http://dx.doi.org/10.1038/nature12653; Z. Liu et al., Cell Host Microbe 14:398-410, 2013, http://dx.doi.org/10.1016/j.chom.2013.08.015). In contrast, the closely related human MX1 protein, which suppresses infection by a range of RNA and DNA viruses (such as influenza A virus [FluAV]), is ineffective against HIV-1. Using a panel of engineered chimeric MX1/2 proteins, we demonstrate that the amino-terminal 91-amino-acid domain of MX2 confers full anti-HIV-1 function when transferred to the amino terminus of MX1, and that this fusion protein retains full anti-FluAV activity. Confocal microscopy experiments further show that this MX1/2 fusion, similar to MX2 but not MX1, can localize to the nuclear envelope (NE), linking HIV-1 inhibition with MX accumulation at the NE. MX proteins are dynamin-like GTPases, and while MX1 antiviral function requires GTPase activity, neither MX2 nor MX1/2 chimeras require this attribute to inhibit HIV-1. This key discrepancy between the characteristics of MX1- and MX2-mediated viral resistance, together with previous observations showing that the L4 loop of the stalk domain of MX1 is a critical determinant of viral substrate specificity, presumably reflect fundamental differences in the mechanisms of antiviral suppression. Accordingly, we propose that further comparative studies of MX proteins will help illuminate the molecular basis and subcellular localization requirements for implementing the noted diversity of virus inhibition by MX proteins. IMPORTANCE: Interferon (IFN) elicits an antiviral state in cells through the induction of hundreds of IFN-stimulated genes (ISGs). The human MX2 protein has been identified as a key effector in the suppression of HIV-1 infection by IFN. Here, we describe a molecular genetic approach, using a collection of chimeric MX proteins, to identify protein domains of MX2 that specify HIV-1 inhibition. The amino-terminal 91-amino-acid domain of human MX2 confers HIV-1 suppressor capabilities upon human and mouse MX proteins and also promotes protein accumulation at the nuclear envelope. Therefore, these studies correlate the cellular location of MX proteins with anti-HIV-1 function and help establish a framework for future mechanistic analyses of MX-mediated virus control.


Asunto(s)
Antivirales/metabolismo , VIH-1/metabolismo , Proteínas de Resistencia a Mixovirus/metabolismo , Membrana Nuclear/metabolismo , Factores R/metabolismo , Secuencia de Aminoácidos , Línea Celular , Línea Celular Tumoral , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Interferones/metabolismo , Datos de Secuencia Molecular , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
13.
J Gen Virol ; 95(Pt 6): 1193-1210, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24584475

RESUMEN

Typical avian influenza A viruses are restricted from replicating efficiently and causing disease in humans. However, an avian virus can become adapted to humans by mutating or recombining with currently circulating human viruses. These viruses have the potential to cause pandemics in an immunologically naïve human population. It is critical that we understand the molecular basis of host-range restriction and how this can be overcome. Here, we review our current understanding of the mechanisms by which influenza viruses adapt to replicate efficiently in a new host. We predominantly focus on the influenza polymerase, which remains one of the least understood host-range barriers.


Asunto(s)
Virus de la Influenza A/patogenicidad , Adaptación Fisiológica , Animales , Aves , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/fisiología , Genes Virales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/fisiología , Especificidad del Huésped/genética , Especificidad del Huésped/inmunología , Especificidad del Huésped/fisiología , Humanos , Inmunidad Innata , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Humana/inmunología , Gripe Humana/virología , Mutación , Neuraminidasa/genética , Neuraminidasa/fisiología , Nucleoproteínas/genética , Nucleoproteínas/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología
14.
J Virol ; 87(2): 1278-84, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115299

RESUMEN

Avian-origin influenza virus polymerase activity can be dramatically increased in human cells with the PB2 E627K mutation. Previously, others have proposed that this mutation increases the stability of the viral ribonucleoprotein complex (vRNP) measured by the interaction between PB2 and NP. However, we demonstrate here that a variety of PB2 adaptive mutations, including E627K, do not enhance the stability of the vRNP but rather increase the amount of replicated RNA that results in more PB2-NP coprecipitation.


Asunto(s)
Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Animales , Aves/virología , Línea Celular , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética
15.
J Virol ; 87(1): 384-94, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23077313

RESUMEN

Reassortant influenza viruses with combinations of avian, human, and/or swine genomic segments have been detected frequently in pigs. As a consequence, pigs have been accused of being a "mixing vessel" for influenza viruses. This implies that pig cells support transcription and replication of avian influenza viruses, in contrast to human cells, in which most avian influenza virus polymerases display limited activity. Although influenza virus polymerase activity has been studied in human and avian cells for many years by use of a minigenome assay, similar investigations in pig cells have not been reported. We developed the first minigenome assay for pig cells and compared the activities of polymerases of avian or human influenza virus origin in pig, human, and avian cells. We also investigated in pig cells the consequences of some known mammalian host range determinants that enhance influenza virus polymerase activity in human cells, such as PB2 mutations E627K, D701N, G590S/Q591R, and T271A. The two typical avian influenza virus polymerases used in this study were poorly active in pig cells, similar to what is seen in human cells, and mutations that adapt the avian influenza virus polymerase for human cells also increased activity in pig cells. In contrast, a different pattern was observed in avian cells. Finally, highly pathogenic avian influenza virus H5N1 polymerase activity was tested because this subtype has been reported to replicate only poorly in pigs. H5N1 polymerase was active in swine cells, suggesting that other barriers restrict these viruses from becoming endemic in pigs.


Asunto(s)
Virus de la Influenza A/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Animales , Células Cultivadas , Virus de la Influenza A/fisiología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , ARN Polimerasa Dependiente del ARN/genética , Porcinos , Replicación Viral
16.
J Virol ; 87(18): 9983-96, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23843645

RESUMEN

Clade 2.2 Eurasian-lineage H5N1 highly pathogenic avian influenza viruses (HPAIVs) were first detected in Qinghai Lake, China, in 2005 and subsequently spread through Asia, Europe, and Africa. Importantly, these viruses carried a lysine at amino acid position 627 of the PB2 protein (PB2 627K), a known mammalian adaptation motif. Previous avian influenza virus isolates have carried glutamic acid in this position (PB2 627E), commonly described to restrict virus polymerase function in the mammalian host. We sought to examine the effect of PB2 627K on viral maintenance in the avian reservoir. Viruses constructed by reverse genetics were engineered to contain converse PB2 627K/E mutations in a Eurasian H5N1 virus (A/turkey/Turkey/5/2005 [Ty/05]) and, for comparison, a historical pre-Asian H5N1 HPAIV that naturally bears PB2 627E (A/turkey/England/50-92/1991 [50-92]). The 50-92 PB2 627K was genetically unstable during virus propagation, resulting in reversion to PB2 627E or the accumulation of the additional mutation PB2 628R and/or a synonymous mutation from an A to a G nucleotide at nucleotide position 1869 (PB2 A1869G). Intriguingly, PB2 628R and/or A1869G appeared to improve the genetic stability of 50-92 PB2 627K. However, the replication of 50-92 PB2 627K in conjunction with these stabilizing mutations was significantly restricted in experimentally infected chickens, where reversion to PB2 627E occurred. In contrast, no significant effects on viral fitness were observed for Ty/05 PB2 627E or 627K in in vitro or in vivo experiments. Our observations suggest that PB2 627K is supported in Eurasian-lineage viruses; in contrast, PB2 627K carries a significant fitness cost in the historical pre-Asian 50-92 virus.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A/fisiología , Mutación Missense , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Sustitución de Aminoácidos , Animales , Asia , Línea Celular , Pollos , Europa (Continente) , Inestabilidad Genómica , Ácido Glutámico/genética , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Lisina/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Genética Inversa , Proteínas Virales/genética
17.
Nucleic Acids Res ; 40(6): 2653-67, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22121214

RESUMEN

The 5'-untranslated region (5'-UTR) of the genomic RNA of human immunodeficiency viruses type-1 (HIV-1) and type-2 (HIV-2) is composed of highly structured RNA motifs essential for viral replication that are expected to interfere with Gag and Gag-Pol translation. Here, we have analyzed and compared the properties by which the viral 5'-UTR drives translation from the genomic RNA of both human immunodeficiency viruses. Our results showed that translation from the HIV-2 gRNA was very poor compared to that of HIV-1. This was rather due to the intrinsic structural motifs in their respective 5'-UTR without involvement of any viral protein. Further investigation pointed to a different role of TAR RNA, which was much inhibitory for HIV-2 translation. Altogether, these data highlight important structural and functional differences between these two human pathogens.


Asunto(s)
Regiones no Traducidas 5' , Duplicado del Terminal Largo de VIH , VIH-1/genética , VIH-2/genética , Biosíntesis de Proteínas , ARN Viral/química , Animales , Línea Celular , Genoma Viral , VIH-2/metabolismo , Humanos , Provirus/genética , Provirus/metabolismo , Ribosomas/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/biosíntesis , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
18.
Nat Genet ; 54(8): 1090-1102, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879413

RESUMEN

CRISPR knockout (KO) screens have identified host factors regulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. Here, we conducted a meta-analysis of these screens, which showed a high level of cell-type specificity of the identified hits, highlighting the necessity of additional models to uncover the full landscape of host factors. Thus, we performed genome-wide KO and activation screens in Calu-3 lung cells and KO screens in Caco-2 colorectal cells, followed by secondary screens in four human cell lines. This revealed host-dependency factors, including AP1G1 adaptin and ATP8B1 flippase, as well as inhibitors, including mucins. Interestingly, some of the identified genes also modulate Middle East respiratory syndrome coronavirus (MERS-CoV) and seasonal human coronavirus (HCoV) (HCoV-NL63 and HCoV-229E) replication. Moreover, most genes had an impact on viral entry, with AP1G1 likely regulating TMPRSS2 activity at the plasma membrane. These results demonstrate the value of multiple cell models and perturbational modalities for understanding SARS-CoV-2 replication and provide a list of potential targets for therapeutic interventions.


Asunto(s)
COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , COVID-19/genética , Células CACO-2 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/genética , Estaciones del Año
19.
J Virol ; 84(19): 9978-86, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20631125

RESUMEN

Typical avian influenza A viruses do not replicate efficiently in humans. The molecular basis of host range restriction and adaptation of avian influenza A viruses to a new host species is still not completely understood. Genetic determinants of host range adaptation have been found on the polymerase complex (PB1, PB2, and PA) as well as on the nucleoprotein (NP). These four viral proteins constitute the minimal set for transcription and replication of influenza viral RNA. It is widely documented that in human cells, avian-derived influenza A viral polymerase is poorly active, but despite extensive study, the reason for this blockade is not known. We monitored the activity of influenza A viral polymerases in heterokaryons formed between avian (DF1) and human (293T) cells. We have discovered that a positive factor present in avian cells enhances the activity of the avian influenza virus polymerase. We found no evidence for the existence of an inhibitory factor for avian virus polymerase in human cells, and we suggest, instead, that the restriction of avian influenza virus polymerases in human cells is the consequence of the absence or the low expression of a compatible positive cofactor. Finally, our results strongly suggest that the well-known adaptative mutation E627K on viral protein PB2 facilitates the ability of a human positive factor to enhance replication of influenza virus in human cells.


Asunto(s)
Alphainfluenzavirus/enzimología , Gripe Aviar/fisiopatología , Gripe Humana/fisiopatología , Sustitución de Aminoácidos , Animales , Aves , Fusión Celular , Línea Celular , Genes Virales , Interacciones Huésped-Patógeno/fisiología , Humanos , Gripe Aviar/virología , Gripe Humana/virología , Alphainfluenzavirus/genética , Alphainfluenzavirus/patogenicidad , Alphainfluenzavirus/fisiología , Mutación Missense , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/fisiología , Proteínas Virales/genética , Proteínas Virales/fisiología , Replicación Viral/fisiología
20.
Viruses ; 13(3)2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33810083

RESUMEN

The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Aves , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Humana/inmunología , Gripe Humana/virología , Aves de Corral , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA