Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820704

RESUMEN

The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas , Cromatina/genética , Elementos de Facilitación Genéticos/genética , Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo
2.
Elife ; 92020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32297854

RESUMEN

The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Proyección Neuronal/fisiología , Animales , Diferenciación Celular/fisiología , Metilación de ADN/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1/metabolismo
3.
Oncotarget ; 9(51): 29548-29564, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-30038703

RESUMEN

The major part of the genome that was previously called junk DNA has been shown to be dynamically transcribed to produce non-coding RNAs. Among them, the long non-coding RNAs (lncRNA) play diverse roles in the cellular context and are therefore involved in various diseases like cancer. LncRNA transcript profiling of glioblastoma (n = 19) and control brain samples (n = 9) identified 2,774 and 5,016 lncRNAs to be upregulated and downregulated in GBMs respectively. Correlation analysis of differentially regulated lncRNAs with mRNA and lncRNA identified several lncRNAs that may potentially regulate many tumor relevant mRNAs and lncRNAs both at nearby locations (cis) and far locations (trans). Integration of our data set with TCGA GBM RNA-Seq data (n = 172) revealed many lncRNAs as a host as well as decoy for many tumor regulated miRNAs. The expression pattern of seven lncRNAs- HOXD-AS2, RP4-792G4.2, CRNDE, ANRIL, RP11-389G6.3, RP11-325122.2 and AC123886.2 was validated by TCGA RNA-Seq data and RT-qPCR. Silencing ANRIL, a GBM upregulated lncRNA, inhibited glioma cell proliferation and colony growth. Cox regression analysis identified several prognostic lncRNAs. An lncRNA risk score derived from five lnRNAs-RP6-99M1.2, SOX21-AS1, CTD-2127H9.1, RP11-375B1.3 and RP3-449M8.9 predicted survival independent of all other markers. Multivariate cox regression analysis involving G-CIMP, IDH1 mutation, MGMT promoter methylation identified lncRNA risk score to be an independent poor predictor of GBM survival. The lncRNA risk score also stratified GBM patients into low and high risk with significant survival difference. Thus our study demonstrates the importance of lncRNA in GBM pathology and underscores the potential possibility of targeting lncRNA for GBM therapy.

4.
Clin Epigenetics ; 9: 32, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28392842

RESUMEN

BACKGROUND: Glioma is the most common of all primary brain tumors with poor prognosis and high mortality. The 2016 World Health Organization classification of the tumors of central nervous system uses molecular parameters in addition to histology to redefine many tumor entities. The new classification scheme divides diffuse gliomas into low-grade glioma (LGG) and glioblastoma (GBM) as per histology. LGGs are further divided into isocitrate dehydrogenase (IDH) wild type or mutant, which is further classified into either oligodendroglioma that harbors 1p/19q codeletion or diffuse astrocytoma that has an intact 1p/19q loci but enriched for ATRX loss and TP53 mutation. GBMs are divided into IDH wild type that corresponds to primary or de novo GBMs and IDH mutant that corresponds to secondary or progressive GBMs. To make the 2016 WHO subtypes of diffuse gliomas more robust, we carried out Prediction Analysis of Microarrays (PAM) to develop DNA methylation signatures for these subtypes. RESULTS: In this study, we applied PAM on a training set of diffuse gliomas derived from The Cancer Genome Atlas (TCGA) and identified DNA methylation signatures to classify LGG IDH wild type from LGG IDH mutant, LGG IDH mutant with 1p/19q codeletion from LGG IDH mutant with intact 1p/19q loci and GBM IDH wild type from GBM IDH mutant with an accuracy of 99-100%. The signatures were validated using the test set of diffuse glioma samples derived from TCGA with an accuracy of 96 to 99%. In addition, we also carried out additional validation of all three signatures using independent LGG and GBM cohorts. Further, the methylation signatures identified a fraction of samples as discordant, which were found to have molecular and clinical features typical of the subtype as identified by methylation signatures. CONCLUSIONS: Thus, we identified methylation signatures that classified different subtypes of diffuse glioma accurately and propose that these signatures could complement 2016 WHO classification scheme of diffuse glioma.


Asunto(s)
Neoplasias Encefálicas/clasificación , Metilación de ADN , Glioma/clasificación , Neoplasias Encefálicas/genética , Islas de CpG , Bases de Datos Genéticas , Epigénesis Genética , Glioma/genética , Humanos , Isocitrato Deshidrogenasa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína p53 Supresora de Tumor/genética , Organización Mundial de la Salud , Proteína Nuclear Ligada al Cromosoma X/genética
5.
Genes Cancer ; 7(3-4): 136-47, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27382437

RESUMEN

The most common and aggressive form of primary brain tumor in adults is glioblastoma (GBM). From the global DNA methylation profiling study, previously published from our laboratory, we identified Guanine Nucleotide binding-protein Gamma subunit 4 (GNG4) to be one of the most hyper methylated and down regulated genes in GBM. GBM derived cell lines showed reduced GNG4 transcript levels, which could be reversed by methylation inhibitor treatment. Bisulphite sequencing confirmed the methylation status in glioblastoma tumor tissue and GBM derived cell lines. Overexpression of GNG4 was found to inhibit proliferation and colony formation of GBM cell lines and in vitro transformation of immortalized human astrocytes, thus suggesting a potential tumor suppressor role of GNG4 in GBM. Correlation of GNG4 transcript levels with that of all GPCRs from TCGA data revealed chemokine receptors as the potential target of GNG4. Furthermore, exogenous over expression of GNG4 inhibited SDF1α/CXCR4-dependent chemokine signaling as seen by reduced pERK and pJNK and GBM cell migration. The inhibitory association between GNG4 and SDF1α/CXCR4 was more evident in mesenchymal subtype of GBM. Thus, this study identifies GNG4 as an inhibitor of SDF1α/CXCR4-dependent signaling and emphasizes the significance of epigenetic inactivation of GNG4 in glioblastoma, especially in mesenchymal subtype.

6.
Cancer Res ; 73(22): 6563-73, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24078801

RESUMEN

Glioblastoma (GBM) is the most common, malignant adult primary tumor with dismal patient survival, yet the molecular determinants of patient survival are poorly characterized. Global methylation profile of GBM samples (our cohort; n = 44) using high-resolution methylation microarrays was carried out. Cox regression analysis identified a 9-gene methylation signature that predicted survival in GBM patients. A risk-score derived from methylation signature predicted survival in univariate analysis in our and The Cancer Genome Atlas (TCGA) cohort. Multivariate analysis identified methylation risk score as an independent survival predictor in TCGA cohort. Methylation risk score stratified the patients into low-risk and high-risk groups with significant survival difference. Network analysis revealed an activated NF-κB pathway association with high-risk group. NF-κB inhibition reversed glioma chemoresistance, and RNA interference studies identified interleukin-6 and intercellular adhesion molecule-1 as key NF-κB targets in imparting chemoresistance. Promoter hypermethylation of neuronal pentraxin II (NPTX2), a risky methylated gene, was confirmed by bisulfite sequencing in GBMs. GBMs and glioma cell lines had low levels of NPTX2 transcripts, which could be reversed upon methylation inhibitor treatment. NPTX2 overexpression induced apoptosis, inhibited proliferation and anchorage-independent growth, and rendered glioma cells chemosensitive. Furthermore, NPTX2 repressed NF-κB activity by inhibiting AKT through a p53-PTEN-dependent pathway, thus explaining the hypermethylation and downregulation of NPTX2 in NF-κB-activated high-risk GBMs. Taken together, a 9-gene methylation signature was identified as an independent GBM prognosticator and could be used for GBM risk stratification. Prosurvival NF-κB pathway activation characterized high-risk patients with poor prognosis, indicating it to be a therapeutic target.


Asunto(s)
Neoplasias Encefálicas/patología , Proteína C-Reactiva/fisiología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , FN-kappa B/fisiología , Proteínas del Tejido Nervioso/fisiología , Fosfohidrolasa PTEN/fisiología , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioblastoma/genética , Humanos , Análisis por Micromatrices , Pronóstico , Ratas , Transducción de Señal/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA