Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; 30(1): e3535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37580909

RESUMEN

Intracellular protein-protein interactions provide a major therapeutic target for the development of peptide-based anticancer therapeutic agents. MDM2 is the 491-residue protein encoded by the MDM2 oncogene. Being a ubiquitin-protein ligase, MDM2 represses the transcription ability of the tumor suppressor p53 by proteasome-mediated degradation. Under typical cellular circumstances, a sustained p53 expression level is maintained by negative regulation of MDM2, whereas under stress conditions, this is alleviated to increase the p53 level. Modulation of MDM2-p53 interaction via fabrication of an MDM2-interacting peptide could be a useful strategy to inhibit subsequent proteasomal degradation of p53 and initiation of p53 signaling leading to the initiation of p53-mediated apoptosis of tumor cells. Here, in this research work, a novel anticancer peptide mPNC-NLS targeting the nucleus and the MDM2 protein (p53 negative regulator) was designed to promote the p53 protein activity for the prevention of cancer. It induces effective apoptosis in both A549 and U87 cells and remains non-cytotoxic to normal lung fibroblast cells (WI38). Further, immunocytochemistry and Western blot results confirm that the designed mPNC-NLS peptide induces the apoptotic death of lung cancer cells via activation of p53 and p21 proteins and remarkably stifled the in vitro growth of 3D multicellular spheroids composed of A549 cells.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/farmacología , Apoptosis , Péptidos/farmacología , Péptidos/metabolismo
2.
Public Health Nutr ; 27(1): e176, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324337

RESUMEN

OBJECTIVE: Numerous studies have examined the relationship between overweight/obesity and iron deficiency anaemia (IDA) across diverse population groups, but a definitive link has not been clearly determined. This systematic review examined the association between overweight/obesity and IDA in women of reproductive age (WRA). DESIGN: The initial search was performed in the CINAHL, Embase, MEDLINE, SCOPUS and Web of Science databases. The studies included should report at least one Fe status with/without an inflammatory marker, using the BMI to define overweight/obesity. Only baseline data were extracted for longitudinal studies. SETTING: Global. PARTICIPANT: Pregnant or non-pregnant women aged 18-50 years. RESULTS: In total, twenty-seven papers were included (twelve addressing pregnant women and fifteen addressing non-pregnant women). Overall, most of the studies reported no association between overweight/obesity and Hb concentration. However, a positive association was reported more frequently in pregnant women. The association between overweight/obesity and serum ferritin concentrations was mixed. Most of the studies on non-pregnant women reported a positive association. Only a few studies measured hepcidin and inflammatory markers, and the majority revealed an increased level among overweight/obese WRA. Among pregnant women, overweight/obesity was positively associated with anaemia and IDA but negatively associated with iron deficiency (ID). Meanwhile, overweight/obese non-pregnant women were positively associated with anaemia, ID and IDA. CONCLUSIONS: Overweight/obesity was associated with a decreased prevalence of anaemia and IDA but an increased prevalence of ID, while its association with several Fe markers was inconclusive. Further studies integrating the assessment of various Fe markers, inflammatory markers and hepcidin are needed.


Asunto(s)
Anemia Ferropénica , Obesidad , Sobrepeso , Humanos , Anemia Ferropénica/epidemiología , Anemia Ferropénica/sangre , Femenino , Embarazo , Obesidad/epidemiología , Obesidad/complicaciones , Obesidad/sangre , Adulto , Sobrepeso/epidemiología , Sobrepeso/complicaciones , Sobrepeso/sangre , Adolescente , Adulto Joven , Ferritinas/sangre , Persona de Mediana Edad , Hepcidinas/sangre , Biomarcadores/sangre , Índice de Masa Corporal , Hemoglobinas/análisis , Hierro/sangre
3.
J Environ Manage ; 360: 121189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759553

RESUMEN

Pyrolysis, a thermochemical conversion approach of transforming plastic waste to energy has tremendous potential to manage the exponentially increasing plastic waste. However, understanding the process kinetics is fundamental to engineering a sustainable process. Conventional analysis techniques do not provide insights into the influence of characteristics of feedstock on the process kinetics. Present study exemplifies the efficacy of using machine learning for predictive modeling of pyrolysis of waste plastics to understand the complexities of the interrelations of predictor variables and their influence on activation energy. The activation energy for pyrolysis of waste plastics was evaluated using machine learning models namely Random Forest, XGBoost, CatBoost, and AdaBoost regression models. Feature selection based on the multicollinearity of data and hyperparameter tuning of the models utilizing RandomizedSearchCV was conducted. Random forest model outperformed the other models with coefficient of determination (R2) value of 0.941, root mean square error (RMSE) value of 14.69 and mean absolute error (MAE) value of 8.66 for the testing dataset. The explainable artificial intelligence-based feature importance plot and the summary plot of the shapely additive explanations projected fixed carbon content, ash content, conversion value, and carbon content as significant parameters of the model in the order; fixed carbon > carbon > ash content > degree of conversion. Present study highlighted the potential of machine learning as a powerful tool to understand the influence of the characteristics of plastic waste and the degree of conversion on the activation energy of a process that is essential for designing the large-scale operations and future scale-up of the process.


Asunto(s)
Inteligencia Artificial , Plásticos , Pirólisis , Plásticos/química , Aprendizaje Automático , Modelos Teóricos
4.
Inorg Chem ; 62(49): 20439-20449, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001041

RESUMEN

High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.

5.
Environ Res ; 232: 116071, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209979

RESUMEN

Existing water and wastewater treatment techniques are becoming increasingly difficult to employ due to the discovery of new toxins, the rapid development of population and industrial activities, and the limited quantity of water resources. Treatment of wastewater is a critical need in modern civilization due to a scarcity of water resources and rising industrial activity. Some of the techniques utilized include adsorption, flocculation, filtration, and others, although they are only used for primary wastewater treatment. However, the development and deployment of modern wastewater management with high efficiency and low capitalization are critical in terms of mitigating the environmental consequences of waste. The employment of different nanomaterials in the treatment of wastewater has opened up a world of possibilities for heavy metal and pesticide removal, as well as the treatment of microbes and organic contaminants in wastewater. Nanotechnology is a rapidly evolving technology because of certain nanoparticle's outstanding physiochemical and biological capabilities as contrasted to bulk counterparts. Secondly, it has been established that this is a cost-effective treatment strategy with significant potential in wastewater management, transcending the limitations imposed by currently existing technology. Advances in nanotechnology to reduce water contamination have been presented in this review, including the use of various nanomaterials such as nanocatalysts, nanoadsorbents, and nanomembranes in the treatment of wastewater containing organic contaminants, hazardous metals, and virulent pathogens.


Asunto(s)
Nanopartículas , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Purificación del Agua/métodos , Filtración , Adsorción
6.
Angew Chem Int Ed Engl ; 62(45): e202312519, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37721455

RESUMEN

The development of Alzheimer's disease (AD) drugs has recently witnessed substantial achievement. To further enhance the pool of drug candidates, it is crucial to explore non-traditional therapeutic avenues. In this study, we present the use of a photolabile curcumin-diazirine analogue, CRANAD-147, to induce changes in properties, structures (sequences), and neurotoxicity of amyloid beta (Aß) species both in cells and in vivo. This manipulation was achieved through irradiation with LED light or molecularly generated light, dubbed as "molecular light", emitted by the chemiluminescence probe ADLumin-4. Next, aided by molecular chemiluminescence imaging, we demonstrated that the combination of CRANAD-147/LED or CRANAD-147/ADLumin-4 (molecular light) could effectively slow down the accumulation of Aßs in transgenic 5xFAD mice in vivo. Leveraging the remarkable tissue penetration capacity of molecular light, phototherapy employing the synergistic effect of a photolabile Aß ligand and molecular light emerges as a promising alternative to conventional AD treatment interventions.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/química , Curcumina/farmacología , Curcumina/uso terapéutico , Diazometano , Ratones Transgénicos , Fototerapia , Modelos Animales de Enfermedad
7.
J Environ Manage ; 298: 113542, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34426219

RESUMEN

Paper industries are water-intensive industries that produce large amount of wastewater containing dyes, toxicity and high nutrient content. These industries require sustainable technology for their waste disposal and MEC could be one of them. However, effective MEC operation at neutral pH and ambient temperature requires economical and efficient cathodes that are capable to treat indusial wastewater along with recovery of energy/biohydrogen. Co-deposits of Nickel, Nickel-Cobalt and Nickel-Cobalt-Phosphorous on the surface of SS and Cu base metals distinctly were used as cathodes in MEC for the concurrent treatment of real paper industry wastewater and biohydrogen production. MECs were utilized in batch mode at neutral pH, applied voltage of 0.6 V and 30 ± 2 °C temperature with paper industry wastewater and activated sludge as microbial sources. The fabricated Nickel-Cobalt-Phosphorous gives the higher hydrogen production rate of 0.16 ± 0.002 m3(H2) m-3d-1 and 0.14 ± 0.002 m3(H2) m -3d -1 respectively, with ~33-42 % treatment efficiency for a 500 ml wastewater in 7-day batch cycle in both the cases; while it is lowest in the case of the control cathodes (SS1 (0.07 ± 0.002 m3(H2) m-3d-1) & Cu1 (0.06 ± 0.004 m3(H2) m-3d-1)). It was also found that fabricated cathodes have the capability to treat industrial wastewater at ambient conditions efficiently with higher energy recovery. Prepared cathodes show enhanced hydrogen production and treatment efficiency as well as are competitive to some reported literature.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Cobalto , Electrólisis , Hidrógeno , Níquel , Fósforo
8.
Chemistry ; 26(44): 10083-10089, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32567726

RESUMEN

In order to gain insight into the influence of the H+ -accepting terminal ligand in high-valent oxidant mediated proton coupled electron transfer (PCET) reactions, the reactivity of a high valent nickel-fluoride complex [NiIII (F)(L)] (2, L=N,N'-(2,6-dimethylphenyl)-2,6-pyridinecarboxamidate) with substituted phenols was explored. Analysis of kinetic data from these reactions (Evans-Polanyi, Hammett, and Marcus plots, and KIE measurements) and the formed products show that 2 reacted with electron rich phenols through a hydrogen atom transfer (HAT, or concerted PCET) mechanism and with electron poor phenols through a stepwise proton transfer/electron transfer (PT/ET) reaction mechanism. The analogous complexes [NiIII (Z)(L)] (Z=Cl, OCO2 H, O2 CCH3 , ONO2 ) reacted with all phenols through a HAT mechanism. We explore the reason for a change in mechanism with the highly basic fluoride ligand in 2. Complex 2 was also found to react one to two orders of magnitude faster than the corresponding analogous [NiIII (Z)(L)] complexes. This was ascribed to a high bond dissociation free energy value associated with H-F (135 kcal mol-1 ), which is postulated to be the product formed from PCET oxidation by 2 and is believed to be the driving force for the reaction. Our findings show that high-valent metal-fluoride complexes represent a class of highly reactive PCET oxidants.

9.
Angew Chem Int Ed Engl ; 59(31): 13044-13050, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32348000

RESUMEN

In the search for highly reactive oxidants we have identified high-valent metal-fluorides as a potential potent oxidant. The high-valent Ni-F complex [NiIII (F)(L)] (2, L=N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate) was prepared from [NiII (F)(L)]- (1) by oxidation with selectfluor. Complexes 1 and 2 were characterized by using 1 H/19 F NMR, UV-vis, and EPR spectroscopies, mass spectrometry, and X-ray crystallography. Complex 2 was found to be a highly reactive oxidant in the oxidation of hydrocarbons. Kinetic data and products analysis demonstrate a hydrogen atom transfer mechanism of oxidation. The rate constant determined for the oxidation of 9,10-dihydroanthracene (k2 =29 m-1 s-1 ) compared favorably with the most reactive high-valent metallo-oxidants. Complex 2 displayed reaction rates 2000-4500-fold enhanced with respect to [NiIII (Cl)(L)] and also displayed high kinetic isotope effect values. Oxidative hydrocarbon and phosphine fluorination was achieved. Our results provide an interesting direction in designing catalysts for hydrocarbon oxidation and fluorination.

10.
J Nutr ; 149(1): 98-105, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30624753

RESUMEN

Background: Environmental enteric dysfunction (EED), a chronic inflammatory disorder of the small bowel, is suspected to impair absorption of micronutrients, including zinc. Objective: The objective of this study was to compare zinc absorption from micronutrient powder (MNP) over a range of zinc doses in young children screened for EED with use of the lactulose:mannitol ratio (L:M). Methods: Bangladeshi children aged 18-24 mo, grouped according to high and low L:M (≥0.09 and <0.09, respectively), were randomly assigned to MNP with 0, 5, 10, or 15 mg Zn/sachet (10 subjects per dose per L:M group). Over a day, fractional absorption of zinc was measured from an MNP-fortified meal and from unfortified meals with stable isotope tracers; total daily absorbed zinc (TAZ, milligrams per day) was determined as the primary outcome. Secondary outcomes included investigation of relations of TAZ to intake, to physiologic requirement, and to other variables, including biomarkers of systemic and intestinal inflammation, using nonlinear models. TAZ was also compared with published data on child zinc absorption. Results: In 74 subjects who completed the study, zinc absorption did not differ by L:M grouping. Most biomarkers of intestinal inflammation were elevated in both L:M groups. For combined L:M groups, mean ± SD TAZ for each MNP dose (0, 5, 10, and 15 mg/sachet) was 0.57 ± 0.30, 0.68 ± 0.31, 0.90 ± 0.43, and 1.0 ± 0.39 mg/d, respectively (P = 0.002), and exceeded the estimated physiologic requirement only for the 10- and 15-mg MNP doses. Zinc absorption was notably lower at all intake levels compared with published data (P < 0.0001) and was inversely related to serum α-1 acid glycoprotein and to fecal Entamoeba histolytica (P = 0.02). Conclusion: Results indicate impaired absorption of zinc, which may predispose to zinc deficiency in young children with evidence of enteropathy. These findings suggest that current doses of zinc in MNP may be insufficient to yield zinc-related preventative benefits in similar settings. This study is registered at clinicaltrials.gov as NCT02758444.


Asunto(s)
Micronutrientes/administración & dosificación , Necesidades Nutricionales , Zinc/administración & dosificación , Zinc/metabolismo , Bangladesh/epidemiología , Transporte Biológico , Fenómenos Fisiológicos Nutricionales Infantiles , Preescolar , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Lactante , Masculino , Estado Nutricional , Pobreza , Polvos , Oligoelementos
11.
Mol Pharm ; 16(6): 2522-2531, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31009223

RESUMEN

A multiarm nanomedicine template has been designed following bottom-up approach, which target neuropilin-1 (Nrp-1) receptor of cancer cells. Through this venture, we discovered that cucurbit [6] uril (CB [6]) binds with tubulin close to binding pocket of vinblastine site and perturbs tubulin polymerization. To increase the specificity of gold nanoparticle (GNP) toward Nrp-1-rich cancer cells, we further modified this GNP with Nrp-1 receptor-specific short peptide (CGNKRTR). Remarkably, we found an interesting self-assembly process upon addition of curcumin into the CB [6] and peptide-functionalized GNP, leading to the formation of a spherical nanocapsule (CGNP·Cur). It can deliver and release significantly higher amounts of anticancer drug curcumin in Nrp-1-rich cancer cells. It causes microtubule depolymerization and significant tumor regression in Nrp-1 overexpressed mice melanoma model. These interesting findings show that nanocapsule has high potential to develop a powerful anticancer nanomedicine and help in its preclinical validation.


Asunto(s)
Nanopartículas del Metal/química , Microtúbulos/metabolismo , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Nanomedicina/métodos , Neuropilina-1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Microscopía por Crioelectrón , Oro/química , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Tubulina (Proteína)/metabolismo
12.
Inorg Chem ; 58(7): 4515-4523, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30864788

RESUMEN

Recent breakthroughs have brought into question the innocence (or not) of carboxamidate donor ligands in the reactivity of high-valent oxidants. To test the reactivity properties of high-valent carboxamidate complexes, [NiII(tBu-terpy)(L)] (1, tBu-terpy = 4,4',4''-tri- tert-butyl-2,2';6',2″-terpyridine; L = N, N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate) was prepared and converted to [NiIII(tBu-terpy)(L)]+ (2) using ceric ammonium nitrate. 2 was characterized using electronic absorption and electron paramagnetic resonance spectroscopies and electrospray ionization mass spectrometry. 2 was found to be a capable oxidant of phenols and through kinetic analysis was found to oxidize these substrates via a nonconcerted or partially concerted proton coupled electron transfer (PCET) mechanism. The products of PCET oxidation of phenols by 2 were phenoxyl radical and the protonated form of 1, 1H+. 1H+ was crystallographically characterized providing convincing evidence of 1's ability to act as a proton acceptor. We demonstrate that the complex remained intact through a full cycle of oxidation of 1 to 2, PCET of 2 to yield 1H+, and deprotonation of 1H+ to yield 1 followed by reoxidation of 1 to yield 2. The N-H bond dissociation energy of the protonated amide in 1H+ was determined to be 84 kcal/mol. Our findings illuminate the role carboxamidate ligands can play in PCET oxidation.

13.
Inorg Chem ; 58(24): 16838-16848, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31804808

RESUMEN

Oxygenases have been postulated to utilize d4 FeIV and d8 CuIII oxidants in proton-coupled electron transfer (PCET) hydrocarbon oxidation. In order to explore the influence the metal ion and d-electron count can hold over the PCET reactivity, two metastable high-valent metal-oxygen adducts, [NiIII(OAc)(L)] (1b) and [CuIII(OAc)(L)] (2b), L = N,N'-(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamidate, were prepared from their low-valent precursors [NiII(OAc)(L)]- (1a) and [CuII(OAc)(L)]- (2a). The complexes 1a/b-2a/b were characterized using nuclear magnetic resonance, Fourier transform infrared, electron paramagnetic resonance, X-ray diffraction, and absorption spectroscopies and mass spectrometry. Both complexes were capable of activating substrates through a concerted PCET mechanism (hydrogen atom transfer, HAT, or concerted proton and electron transfer, CPET). The reactivity of 1b and 2b toward a series of para-substituted 2,6-di-tert-butylphenols (p-X-2,6-DTBP; X = OCH3, C(CH3)3, CH3, H, Br, CN, NO2) was studied, showing similar rates of reaction for both complexes. In the oxidation of xanthene, the d8 CuIII oxidant displayed a small increase in the rate constant compared to that of the d7 NiIII oxidant. The d8 CuIII oxidant was capable of oxidizing a large family of hydrocarbon substrates with bond dissociation enthalpy (BDEC-H) values up to 90 kcal/mol. It was previously observed that exchanging the ancillary anionic donor ligand in such complexes resulted in a 20-fold enhancement in the rate constant, an observation that is further enforced by comparison of 1b and 2b to the literature precedents. In contrast, we observed only minor differences in the rate constants upon comparing 1b to 2b. It was thus concluded that in this case the metal ion has a minor impact, while the ancillary donor ligand yields more kinetic control over HAT/CPET oxidation.

14.
J Pediatr Gastroenterol Nutr ; 68(6): 874-879, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31033623

RESUMEN

OBJECTIVES: Environmental enteric dysfunction (EED) impairs zinc absorption from food, and zinc deficiency may contribute to the poor growth associated with EED. We examined zinc absorption from a standardized aqueous zinc dose, and habitual daily endogenous fecal zinc excretion (EFZ) and compared these outcomes between children grouped by the lactulose to mannitol ratio (L:M). METHODS: Bangladeshi toddlers (18-24 months) with low (<0.09) and high (≥0.09) L:M were administered isotope-labeled 3 mg aqueous zinc in the fasted state. Fractional absorption of zinc (FAZ) and EFZ were measured by dual stable isotope tracer method and an isotope dilution method, respectively. Secondary aims included examining relationships of biomarkers of systemic and intestinal inflammation and gut function with FAZ and EFZ. RESULTS: Forty children completed the study; nearly all had evidence of EED. No differences in zinc homeostasis measurements (mean ±â€ŠSD) were observed between high and low L:M groups: FAZ was 0.38 ±â€Š0.19 and 0.31 ±â€Š0.19, respectively; both figures were within estimated reference range. Means of EFZ were 0.73 ±â€Š0.27 and 0.76 ±â€Š0.20 mg/day for high and low L:M, respectively, and were 10% to 15% above estimated reference range. Regression analyses indicated that biomarkers of systemic inflammation were directly associated with increasing FAZ, consistent with increased gut permeability. Biomarkers of intestinal inflammation were negatively associated with EFZ, consistent with low-zinc intake and chronic deficiency. CONCLUSIONS: In these children at risk of EED, endogenous zinc losses were not markedly increased. Results suggest that efforts to improve zinc status in EED should focus on substantially improving zinc intakes.


Asunto(s)
Enteritis/etiología , Heces/química , Absorción Intestinal , Síndromes de Malabsorción/fisiopatología , Zinc/análisis , Bangladesh , Biomarcadores/análisis , Preescolar , Femenino , Humanos , Lactante , Intestinos/fisiopatología , Lactulosa/análisis , Síndromes de Malabsorción/complicaciones , Masculino , Manitol/análisis , Estado Nutricional , Zinc/deficiencia
15.
J Am Chem Soc ; 140(5): 1834-1841, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29293330

RESUMEN

Oxo-metal-halide moieties have often been implicated as C-H bond activating oxidants with the terminal oxo-metal entity identified as the electrophilic oxidant. The electrophilic reactivity of metal-halide species has not been investigated. We have prepared a high-valent nickel-halide complex [NiIII(Cl)(L)] (2, L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamide) by one-electron oxidation of a [NiII(Cl)(L)]- precursor. 2 was characterized using electronic absorption, electron paramagnetic resonance, and X-ray absorption spectroscopies and mass spectrometry. 2 reacted readily with substrates containing either phenolic O-H or hydrocarbon C-H bonds. Analysis of the Hammett, Evans-Polanyi, and Marcus relationships between the determined rate constants and substrate pKa, X-H bond dissociation energy, and oxidation potential, respectively, was performed. Through this analysis, we found that 2 reacted by a hydrogen atom transfer (HAT) mechanism. Our findings shine light on enzymatic high-valent oxo-metal-halide oxidants and open new avenues for oxidative halogenation catalyst design.


Asunto(s)
Cloruros/química , Hidrógeno/química , Níquel/química , Compuestos Organometálicos/química , Catálisis , Estructura Molecular
16.
J Am Chem Soc ; 140(5): 1697-1714, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29283563

RESUMEN

Identification of key amino acids is required for development of efficient cell-penetrating peptides (CPPs) and has tremendous implications in medicine. Extensive research work has enlightened us about the importance of two amino acids, arginine and tryptophan, in cell penetration. Here, we present a top-down approach to show how spatial positions of two tryptophans regulate the cellular entry and nuclear localization. This enables us to develop short, non-toxic tetrapeptides with excellent potential for cell penetration and nuclear localization. Among them, Glu-Thr-Trp-Trp (ETWW) emerges as the most promising. Results suggest that it enters into cancer cells following an endocytic pathway and binds at the major groove of nuclear DNA, where successive tryptophan plays major role. We subsequently show that it is not a P-glycoprotein substrate and is non-toxic to PC12-derived neurons, suggesting its excellent potential as a CPP. Furthermore, its potential as a CPP is validated in multi-cellular 3D cell culture (spheroid) and in in vivo mice model. This study provides major fundamental insights about the positional importance of tryptophan and opens new avenues toward the development of next-generation CPPs and major-groove-specific anticancer drugs.


Asunto(s)
Núcleo Celular/metabolismo , Péptidos de Penetración Celular/metabolismo , Triptófano/metabolismo , Animales , Núcleo Celular/química , Péptidos de Penetración Celular/química , Células Cultivadas , Humanos , Células MCF-7 , Ratones , Células PC12 , Ratas , Triptófano/química
17.
Langmuir ; 34(3): 1123-1132, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28558224

RESUMEN

Microtubules regulate eukaryotic cell functions, which have tremendous implication in tumor progression. Thus, the design of novel approaches for controlling microtubule function is extremely important. In this manuscript, a novel tetrapeptide Ser-Leu-Arg-Pro (SLRP) has been designed and synthesized from a small peptide library consisting of 14 tetrapeptides, which perturbs microtubule function through interaction in the "anchor region". We have studied the role of peptides on microtubule function on a chemically functionalized 2D platform. Interestingly, we have found that SLRP binds with tubulin and inhibits the kinesin-driven microtubule motility on a kinesin-immobilized chemically functionalized 2D platform. Further, this peptide modulator interacts with intracellular tubulin/microtubule and depolymerizes the microtubule networks. These interesting findings of perturbation of microtubule function both on engineered platforms and inside the cell by this small peptide modulator inspired us to study the effect of this tetrapeptide on cancer cell proliferation. We found that the novel tetrapeptide modulator causes moderate cytotoxicity to the human breast cancer cell (MCF-7 cell), induces the apoptotic death of MCF-7 cell, and activates the tumor suppressor proteins p53 and cyclin-dependent kinase inhibitor 1 (p21). To the best of our knowledge, this is the shortest peptide discovered, which perturbs microtubule function both on an engineered 2D platform and inside the cell.


Asunto(s)
Diseño de Fármacos , Microtúbulos/metabolismo , Oligopéptidos/metabolismo , Tubulina (Proteína)/metabolismo , Apoptosis/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , Simulación del Acoplamiento Molecular , Oligopéptidos/química , Oligopéptidos/farmacología , Unión Proteica , Conformación Proteica , Proteína p53 Supresora de Tumor/metabolismo
18.
Phys Chem Chem Phys ; 19(20): 12620-12627, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28489114

RESUMEN

A live cell is a complex, yet extremely important container. Understanding the dynamics in a selected intracellular component is a challenging task. We have recently made significant progress in this direction using a confocal microscope as a tool. The smallest size of the focused spot in a confocal microscope is ∼0.2 µm (200 nm). This is nearly one hundred times smaller than the size of a live cell. Thus, one can selectively study different intracellular components/organelles in a live cell. In this paper, we discuss how one can image different intracellular components/organelles, record fluorescence spectra and decay at different locations, ascertain local polarity and viscosity, and monitor the dynamics of solvation, proton transfer, red-ox and other phenomena at specified locations/organelles inside a cell. We will highlight how this knowledge enriched us in differentiating between cancer and non-cancer cells, 3D tumor spheroids and towards drug delivery.


Asunto(s)
Microscopía Confocal , Orgánulos/química , Péptidos beta-Amiloides/química , Línea Celular , Cumarinas/química , Colorantes Fluorescentes/química , Humanos , Orgánulos/patología , Protones , Esferoides Celulares/química , Esferoides Celulares/patología , Viscosidad
19.
Phys Chem Chem Phys ; 20(1): 449-455, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29211079

RESUMEN

The fluorescence dynamics of Photosystem I (PSI) in bulk water and inside a confined environment like a liposome have been investigated using time resolved confocal microscopy. In bulk water, PSI exhibits a major emission peak at ∼680 nm, while in the liposome it exhibits a markedly blue shifted emission maximum at ∼485 nm. This is indicative of conformational changes due to entrapment and emergence of a stressed conformation of PSI inside the liposome. The observed time constants for the fluorescence lifetime of PSI inside the liposome are significantly high as opposed to PSI in bulk water. More interestingly, the fluorescence intensity of PSI in bulk water exhibits strong fluctuations with many high intensity jumps and these are anti-correlated with the fluorescence lifetime of PSI. In contrast, inside the liposome, no such anti-correlated behaviour is observed. We further demonstrated that PSI exhibits at least two conformational states in bulk water, whereas a single conformation is observed inside the liposome, indicating the conformational rigidity and locking of the PSI complex inside a liposome.

20.
J Environ Manage ; 200: 160-169, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28577453

RESUMEN

The presence of arsenic and fluoride in groundwater has been observed throughout the world. Many technologies have been developed by various research groups in order to tackle this problem. Adsorption has emerged as one of the best possible technique for the removal of arsenic, fluoride and many other pollutants from drinking water. Although a considerable amount of work has been published on the adsorptive removal of arsenic and fluoride, the area related to the management of spent adsorbent is not well explored. Present paper deals with the adsorptive removal of arsenic and fluoride from aqueous solution by three different types of adsorbents, namely, thermally treated laterite (TTL), acid-base treated laterite (ABTL) and aluminum oxide/hydroxide nanoparticles (AHNP). Under the experimental conditions in batch operation, the adsorption capacities of TTL, ABLT and AHNP for arsenic are found to be 6.43 µg/g, 9.25 µg/g and 48.5 µg/g respectively, whereas for fluoride, these values are found as 0.21 mg/g, 0.85 mg/g and 4.65 mg/g respectively. After adsorption, the spent adsorbents have been stabilized in the form of clay bricks. The effects of spent adsorbent concentration on the properties of bricks and their leaching properties are investigated. The bricks have been tested for various properties like density, percentage water absorption, shrinkage, compressive strength and efflorescence. The maximum values of density and shrinkage of the bricks formed are found as 2.3 g/cm3 and 10.2%, whereas the percentage water absorption and compressive strength of the bricks are found between 11 and 14% and 35 to 150 kgf/cm2 respectively. All the test results are in accordance with the criteria set by Indian Standards. The leaching test of arsenic and fluoride from the bricks reveals that their maximum values in leachate are 510 µg/L and 2.1 mg/L respectively, which are below the permissible limits of USEPA standards.


Asunto(s)
Silicatos de Aluminio , Arsénico , Fluoruros , Purificación del Agua , Adsorción , Arcilla , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA