Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 22, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265489

RESUMEN

Ependymomas encompass multiple clinically relevant tumor types based on localization and molecular profiles. Tumors of the methylation class "spinal ependymoma" (SP-EPN) represent the most common intramedullary neoplasms in children and adults. However, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical relevance have been described in a large, epigenetically defined series. Transcriptomic (n = 72), epigenetic (n = 225), genetic (n = 134), and clinical data (n = 112) were integrated for a detailed molecular overview on SP-EPN. Additionally, we mapped SP-EPN transcriptomes to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. The integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord revealed that SP-EPN display the highest similarities to mature adult ependymal cells. Unsupervised hierarchical clustering of transcriptomic data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype A tumors primarily carried previously known germline or sporadic NF2 mutations together with 22q loss (bi-allelic NF2 loss), resulting in decreased NF2 expression. Furthermore, they more often presented as multilocular disease and demonstrated a significantly reduced progression-free survival as compared to SP-EP subtype B. In contrast, subtype B predominantly contained samples without NF2 mutation detected in sequencing together with 22q loss (monoallelic NF2 loss). These tumors showed regular NF2 expression but more extensive global copy number alterations. Based on integrated molecular profiling of a large multi-center cohort, we identified two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.


Asunto(s)
Ependimoma , Neoplasias de la Médula Espinal , Adulto , Niño , Humanos , Transcriptoma , Perfilación de la Expresión Génica , Mutación , Epigénesis Genética
2.
Eur J Nucl Med Mol Imaging ; 50(6): 1699-1708, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36670283

RESUMEN

PURPOSE: Positron emission tomography (PET) with O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) is a well-established tool for non-invasive assessment of adult central nervous system (CNS) tumors. However, data on its diagnostic utility and impact on clinical management in children and adolescents are limited. METHODS: Twenty-one children and young adults (13 males; mean age, 8.6 ± 5.2 years; range, 1-19 at initial diagnosis) with either newly diagnosed (n = 5) or pretreated (n = 16) CNS tumors were retrospectively analyzed. All patients had previously undergone neuro-oncological work-up including cranial magnetic resonance imaging. In all cases, [18F]FET-PET was indicated in a multidisciplinary team conference. The impact of PET imaging on clinical decision-making was assessed. Histopathology (n = 12) and/or clinical and imaging follow-up (n = 9) served as the standard of reference. RESULTS: The addition of [18F]FET-PET to the available information had an impact on further patient management in 14 out of 21 subjects, with avoidance of invasive surgery or biopsy in four patients, biopsy guidance in four patients, change of further treatment in another five patients, and confirmation of diagnosis in one patient. CONCLUSION: [18F]FET-PET may provide important additional information for treatment guidance in pediatric and adolescent patients with CNS tumors.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioma , Masculino , Adulto Joven , Humanos , Niño , Adolescente , Preescolar , Neoplasias Encefálicas/patología , Glioma/patología , Estudios Retrospectivos , Tomografía de Emisión de Positrones/métodos , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tirosina , Toma de Decisiones Clínicas
3.
BMC Neurol ; 23(1): 398, 2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925427

RESUMEN

BACKGROUND: Hematogenous tumor spread of malignant meningiomas occurs very rarely but is associated with very poor prognosis. CASE PRESENTATION: We report an unusual case of a patient with a malignant meningioma who developed multiple metastases in bones, lungs and liver after initial complete resection of the primary tumor. After partial hepatic resection, specimens were histologically analyzed, and a complete loss of E-cadherin adhesion molecules was found. No oncogenic target mutations were found. The patient received a combination of conventional radiotherapy and peptide receptor radionuclide therapy (PRRT). Due to aggressive tumor behavior and rapid spread of metastases, the patient deceased after initiation of treatment. CONCLUSIONS: E-cadherin downregulation is associated with a higher probability of tumor invasion and distant metastasis formation in malignant meningioma. Up to now, the efficacy of systemic therapy, including PRRT, is very limited in malignant meningioma patients.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Humanos , Cadherinas/metabolismo , Neoplasias Meníngeas/patología , Meningioma/patología , Pronóstico
4.
Acta Neuropathol ; 143(6): 697-711, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35501487

RESUMEN

Atypical teratoid/rhabdoid tumor (ATRT) is an aggressive central nervous system tumor characterized by loss of SMARCB1/INI1 protein expression and comprises three distinct molecular groups, ATRT-TYR, ATRT-MYC and ATRT-SHH. ATRT-SHH represents the largest molecular group and is heterogeneous with regard to age, tumor location and epigenetic profile. We, therefore, aimed to investigate if heterogeneity within ATRT-SHH might also have biological and clinical importance. Consensus clustering of DNA methylation profiles and confirmatory t-SNE analysis of 65 ATRT-SHH yielded three robust molecular subgroups, i.e., SHH-1A, SHH-1B and SHH-2. These subgroups differed by median age of onset (SHH-1A: 18 months, SHH-1B: 107 months, SHH-2: 13 months) and tumor location (SHH-1A: 88% supratentorial; SHH-1B: 85% supratentorial; SHH-2: 93% infratentorial, often extending to the pineal region). Subgroups showed comparable SMARCB1 mutational profiles, but pathogenic/likely pathogenic SMARCB1 germline variants were over-represented in SHH-2 (63%) as compared to SHH-1A (20%) and SHH-1B (0%). Protein expression of proneural marker ASCL1 (enriched in SHH-1B) and glial markers OLIG2 and GFAP (absent in SHH-2) as well as global mRNA expression patterns differed, but all subgroups were characterized by overexpression of SHH as well as Notch pathway members. In a Drosophila model, knockdown of Snr1 (the fly homologue of SMARCB1) in hedgehog activated cells not only altered hedgehog signaling, but also caused aberrant Notch signaling and formation of tumor-like structures. Finally, on survival analysis, molecular subgroup and age of onset (but not ASCL1 staining status) were independently associated with overall survival, older patients (> 3 years) harboring SHH-1B experiencing relatively favorable outcome. In conclusion, ATRT-SHH comprises three subgroups characterized by SHH and Notch pathway activation, but divergent molecular and clinical features. Our data suggest that molecular subgrouping of ATRT-SHH has prognostic relevance and might aid to stratify patients within future clinical trials.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Neoplasias Neuroepiteliales , Tumor Rabdoide , Teratoma , Neoplasias del Sistema Nervioso Central/genética , Metilación de ADN , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Neoplasias Neuroepiteliales/genética , Pronóstico , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Teratoma/genética
5.
Cancer Cell Int ; 22(1): 87, 2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35183162

RESUMEN

BACKGROUND: Despite of a multimodal approach, recurrences can hardly be prevented in glioblastoma. This may be in part due to so called glioma stem cells. However, there is no established marker to identify these stem cells. METHODS: Paired samples from glioma patients were analyzed by immunohistochemistry for expression of the following stem cell markers: CD133, Musashi, Nanog, Nestin, octamer-binding transcription factor 4 (Oct4), and sex determining region Y-box 2 (Sox2). In addition, the expression of osteopontin (OPN) was investigated. The relative number of positively stained cells was determined. By means of Kaplan-Meier analysis, a possible association with overall survival by marker expression was investigated. RESULTS: Sixty tissue samples from 30 patients (17 male, 13 female) were available for analysis. For Nestin, Musashi and OPN a significant increase was seen. There was also an increase (not significant) for CD133 and Oct4. Patients with mutated Isocitrate Dehydrogenase-1/2 (IDH-1/2) status had a reduced expression for CD133 and Nestin in their recurrent tumors. Significant correlations were seen for CD133 and Nanog between OPN in the primary and recurrent tumor and between CD133 and Nestin in recurrent tumors. By confocal imaging we could demonstrate a co-expression of CD133 and Nestin within recurrent glioma cells. Patients with high CD133 expression had a worse prognosis (22.6 vs 41.1 months, p = 0.013). A similar trend was seen for elevated Nestin levels (24.9 vs 41.1 months, p = 0.08). CONCLUSIONS: Most of the evaluated markers showed an increased expression in their recurrent tumor. CD133 and Nestin were associated with survival and are candidate markers for further clinical investigation.

6.
Brain Behav Immun ; 101: 194-210, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032575

RESUMEN

BACKGROUND: Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. METHODS: We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)-/- mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4+/CD8-, CD4-/CD8+, or CD4+/CD8+ (JHD-/-) mice into the RAG-1-/- mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. RESULTS: AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. CONCLUSIONS: Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedad de Parkinson/patología , ARN , Sustancia Negra/metabolismo , Linfocitos T/metabolismo , alfa-Sinucleína/metabolismo
7.
J Neural Transm (Vienna) ; 129(5-6): 545-555, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35364741

RESUMEN

Idiopathic Parkinson's disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus-subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood-brain barrier.


Asunto(s)
Enfermedad de Parkinson , Autoanticuerpos , Autoantígenos/metabolismo , Encéfalo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Enfermedad de Parkinson/metabolismo
8.
Int J Legal Med ; 136(6): 1841-1850, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35821334

RESUMEN

Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.


Asunto(s)
Microglía , Sustancia Blanca , Biomarcadores/metabolismo , Humanos , Proteínas de la Membrana , Microglía/metabolismo , Parafina/metabolismo , Punción Espinal , Sustancia Blanca/metabolismo
9.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409086

RESUMEN

Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Neoplasias Encefálicas , Glioblastoma , Glioma , Esterol O-Aciltransferasa/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Isocitrato Deshidrogenasa/genética , Mutación
10.
Int J Legal Med ; 135(6): 2315-2322, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34553260

RESUMEN

The aim of this pilot study was to investigate the diagnostic potential of TMEM119 as a useful microglia-specific marker in combination with immunostainings for phagocytic function and infiltrating capacity of monocytes in cases of lethal monosubstance intoxications by morphine (MOR), methamphetamine (METH), and of ethanol-associated death (ETH) respectively. Human brain tissue samples were obtained from forensic autopsies of cases with single substance abuse (MOR, n = 8; ETH, n = 10; METH, n = 9) and then compared to a cohort of cardiovascular fatalities as controls (n = 9). Brain tissue samples of cortex, white matter, and hippocampus were collected and stained immunohistochemically with antibodies against TMEM119, CD68KiM1P, and CCR2. We could document the lowest density of TMEM119-positive cells in MOR deaths with highly significant differences to the control densities in all three regions investigated. In ETH and METH deaths, the expression of TMEM119 was comparable to cell densities in controls. The results indicate that the immunoreaction in brain tissue is different in these groups depending on the drug type used for abuse.


Asunto(s)
Metanfetamina , Microglía , Humanos , Inmunohistoquímica , Proteínas de la Membrana , Microglía/metabolismo , Morfina , Proyectos Piloto
11.
Int J Legal Med ; 135(4): 1525-1535, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33895854

RESUMEN

The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico , Proteína Básica de Mielina/líquido cefalorraquídeo , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores/líquido cefalorraquídeo , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad
12.
Acta Neuropathol ; 139(2): 305-318, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31679042

RESUMEN

According to the WHO classification, ependymal tumors are classified as subependymomas, myxopapillary ependymomas, classic ependymomas, anaplastic ependymomas, and RELA-fusion-positive ependymomas (RELA-EPN). Among classic ependymomas, the WHO defines rare histological variants, i.e., the clear cell, papillary, and tanycytic ependymoma. In parallel, global DNA methylation patterns distinguish nine molecular groups, some of which tightly overlap with histopathological subgroups. However, the match of the aforementioned histological variants to DNA methylation classes remains unclear. We analyzed histomorphology, clinical parameters, and global DNA methylation of tumors with the initial histological diagnoses of tanycytic (n = 12), clear cell (n = 14), or papillary ependymoma (n = 19). Forty percent of these tumors did not match to the epigenetic profile of ependymomas, using a previously published DNA methylation-based classifier for brain tumors. Instead, they were classified as low-grade glioma (n = 3), plexus tumor (n = 2), CNS high-grade neuroepithelial tumor with MN1 alteration (n = 2), papillary tumor of the pineal region (n = 2), neurocytoma (n = 1), or did not match to any known brain tumor methylation class (n = 8). Overall, integrated diagnosis had to be changed in 35.6% of cases as compared to the initial diagnosis. Among the tumors molecularly classified as ependymoma (27/45 cases), tanycytic ependymomas were mostly located in the spine (5/7 cases) and matched to spinal or myxopapillary ependymoma. 6/8 clear cell ependymomas were found supratentorially and fell into the methylation class of RELA-EPN. Papillary ependymomas with a positive ependymoma match (12/19 cases) showed either a "papillary" (n = 5), a "trabecular" (n = 1), or a "pseudo-papillary" (n = 6) growth pattern. The papillary growth pattern was strongly associated with the methylation class B of posterior fossa ependymoma (PFB, 5/5 cases) and tumors displayed DNA methylation sites that were significantly different when compared to PFB ependymomas without papillary growth. Tumors with pseudo-papillary histology matched to the methylation class of myxopapillary ependymoma (4/6 cases), whereas the trabecular case was anatomically and molecularly a spinal ependymoma. Our results show that the diagnosis of histological ependymoma variants is challenging and epigenetic profiles may improve diagnostic accuracy of these cases. Whereas clear cell and papillary ependymomas display correlations between localization, histology, and methylation, tanycytic ependymoma does not represent a molecularly distinct subgroup.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Ependimoma/genética , Ependimoma/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/mortalidad , Niño , Estudios de Cohortes , Metilación de ADN , Ependimoma/mortalidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Supervivencia sin Progresión , Tasa de Supervivencia , Adulto Joven
13.
Int J Legal Med ; 134(6): 2167-2176, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32719959

RESUMEN

The aim of the present study was a refined analysis of neuroinflammation including TMEM119 as a useful microglia-specific marker in forensic assessments of traumatic causes of death, e.g., traumatic brain injury (TBI). Human brain tissue samples were obtained from autopsies and divided into cases with lethal TBI (n = 25) and subdivided into three groups according to their trauma survival time and compared with an age-, gender-, and postmortem interval-matched cohort of sudden cardiovascular fatalities as controls (n = 23). Brain tissue samples next to cortex contusions and surrounding white matter as well as samples of the ipsilateral uninjured brain stem and cerebellum were collected and stained immunohistochemically with antibodies against TMEM119, CD206, and CCR2. We could document the highest number of TMEM119-positive cells in acute TBI death with highly significant differences to the control numbers. CCR2-positive monocytes showed a significantly higher cell count in the cortex samples of TBI cases than in the controls with an increasing number of immunopositive cells over time. The number of CD206-positive M2 microglial cells increased survival time-dependent. After 3 days of survival, the cell number increased significantly in all four regions investigated compared with controls. In sum, we validate a specific and robustly expressed as well as fast reacting microglia marker, TMEM119, which distinguishes microglia from resident and infiltrating macrophages and thus offers a great potential for the estimation of the minimum survival time after TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Glicoproteínas de Membrana , Proteínas de la Membrana , Microglía/metabolismo , Receptores CCR2 , Receptores Inmunológicos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores , Cerebelo/citología , Niño , Preescolar , Femenino , Patologia Forense , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Puente/citología , Sustancia Blanca/citología , Adulto Joven
14.
J Neural Transm (Vienna) ; 126(7): 815-840, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31240402

RESUMEN

Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aß) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.


Asunto(s)
Enfermedad de Parkinson/patología , alfa-Sinucleína , Animales , Humanos
15.
Int J Legal Med ; 133(4): 1141-1146, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30927078

RESUMEN

Due to its protected anatomical location, cerebrospinal fluid (CSF) is a very stable fluid which undergoes comparatively little change in the early post-mortem phase. While many immunohistochemical markers already established for clinical diagnostic issues in tissue samples obtained by biopsy could meanwhile be translated also to post-mortem tissue, no systematic immunocytochemical investigations have generally been conducted on post-mortem body fluids and for CSF specifically, have not been established at all. CSF as the fluid directly surrounding the brain should also be examined to allow a more detailed characterization of processes in the central nervous system. Comparing traumatized tissue and CSF can complete forensic assessment and complement neuropathological evaluation.


Asunto(s)
Biomarcadores/líquido cefalorraquídeo , Proteínas del Líquido Cefalorraquídeo/análisis , Líquido Cefalorraquídeo/química , Inmunohistoquímica/métodos , Autopsia , Patologia Forense/métodos , Humanos , Cambios Post Mortem
16.
BMC Neurol ; 19(1): 59, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971206

RESUMEN

BACKGROUND: Scattered extracellular deposits of amyloid within the brain parenchyma can be found in a heterogeneous group of diseases. Its condensed accumulation in the white matter without evidence for systemic amyloidosis is known as primary brain amyloidoma (PBA). Although originally considered as a tumor-like lesion by its space-occupying effect, this condition displays also common hallmarks of a neurodegenerative disorder. CASE PRESENTATION: A 50-year-old woman presented with a mild cognitive decline and seizures with a right temporal, irregular and contrast-enhancing mass on magnetic resonance imaging. Suspecting a high-grade glioma, the firm tumor was subtotally resected. Neuropathological examination showed no glioma, but distinct features of a neurodegenerative disorder. The lesion was composed of amyloid AL λ aggregating within the brain parenchyma as well as the adjacent vessels, partially obstructing the vascular lumina. Immunostaining confirmed a distinct perivascular inflammatory reaction. After removal of the PBA, mnestic impairments improved considerably, the clinical course and MRI-results are stable in the 8-year follow-up. CONCLUSION: Based on our histopathological findings, we propose to regard the clinicopathological entity of PBA as an overlap between a neoplastic and neurodegenerative disorder. Since the lesions are locally restricted, they might be amenable to surgery with the prospect of a definite cure.


Asunto(s)
Amiloidosis/patología , Encefalopatías/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad
17.
Int J Mol Sci ; 20(3)2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30704100

RESUMEN

Chemokines (C-X-C) motif ligand (CXCL) 5 and 8 are overexpressed in patients with multiple sclerosis, where CXCL5 serum levels were shown to correlate with blood-brain barrier dysfunction as evidenced by gadolinium-enhanced magnetic resonance imaging. Here, we studied the potential role of CXCL5/CXCL8 receptor 2 (CXCR2) as a regulator of paraendothelial brain barrier function, using the well-characterized human cerebral microvascular endothelial cell line hCMEC/D3. Low basal CXCR2 mRNA and protein expression levels in hCMEC/D3 were found to strongly increase under inflammatory conditions. Correspondingly, immunohistochemistry of brain biopsies from two patients with active multiple sclerosis revealed upregulation of endothelial CXCR2 compared to healthy control tissue. Recombinant CXCL5 or CXCL8 rapidly and transiently activated Akt/protein kinase B in hCMEC/D3. This was followed by a redistribution of tight junction-associated protein zonula occludens-1 (ZO-1) and by the formation of actin stress fibers. Functionally, these morphological changes corresponded to a decrease of paracellular barrier function, as measured by a real-time electrical impedance-sensing system. Importantly, preincubation with the selective CXCR2 antagonist SB332235 partially prevented chemokine-induced disturbance of both tight junction morphology and function. We conclude that human brain endothelial CXCR2 may contribute to blood-brain barrier disturbance under inflammatory conditions with increased CXCL5 and CXCL8 expression, where CXCR2 may also represent a novel pharmacological target for blood-brain barrier stabilization.


Asunto(s)
Quimiocina CXCL5/metabolismo , Células Endoteliales/metabolismo , Interleucina-8/metabolismo , Receptores de Interleucina-8B/metabolismo , Barrera Hematoencefálica/metabolismo , Western Blotting , Línea Celular , Endotelio Vascular/metabolismo , Humanos , Inmunohistoquímica , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
18.
Cancer Immunol Immunother ; 67(10): 1545-1558, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30054667

RESUMEN

High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evaluated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells (Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lymphopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma immune responses.


Asunto(s)
Neoplasias Encefálicas/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Glioma/inmunología , Terapia de Inmunosupresión , Inmunoterapia , Linfocitos T Reguladores/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/análisis , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/administración & dosificación , Estudios de Casos y Controles , Células Cultivadas , Niño , Células Dendríticas/inmunología , Femenino , Glioma/patología , Glioma/terapia , Humanos , Tolerancia Inmunológica , Depleción Linfocítica , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Acta Neuropathol ; 136(2): 273-291, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29564591

RESUMEN

Tumors with histological features of pilocytic astrocytoma (PA), but with increased mitotic activity and additional high-grade features (particularly microvascular proliferation and palisading necrosis) have often been designated anaplastic pilocytic astrocytomas. The status of these tumors as a separate entity has not yet been conclusively demonstrated and molecular features have only been partially characterized. We performed DNA methylation profiling of 102 histologically defined anaplastic pilocytic astrocytomas. T-distributed stochastic neighbor-embedding (t-SNE) and hierarchical clustering analysis of these 102 cases against 158 reference cases from 12 glioma reference classes revealed that a subset of 83 of these tumors share a common DNA methylation profile that is distinct from the reference classes. These 83 tumors were thus denominated DNA methylation class anaplastic astrocytoma with piloid features (MC AAP). The 19 remaining tumors were distributed amongst the reference classes, with additional testing confirming the molecular diagnosis in most cases. Median age of patients with MC AAP was 41.5 years. The most frequent localization was the posterior fossa (74%). Deletions of CDKN2A/B (66/83, 80%), MAPK pathway gene alterations (49/65, 75%, most frequently affecting NF1, followed by BRAF and FGFR1) and mutations of ATRX or loss of ATRX expression (33/74, 45%) were the most common molecular alterations. All tumors were IDH1/2 wildtype. The MGMT promoter was methylated in 38/83 tumors (45%). Outcome analysis confirmed an unfavorable clinical course in comparison to PA, but better than IDH wildtype glioblastoma. In conclusion, we show that a subset of histologically defined anaplastic pilocytic astrocytomas forms a separate DNA methylation cluster, harbors recurrent alterations in MAPK pathway genes in combination with alterations of CDKN2A/B and ATRX, affects patients who are on average older than those diagnosed with PA and has an intermediate clinical outcome.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Isocitrato Deshidrogenasa/genética , Transducción de Señal/genética , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Metilación de ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mutación/genética , Estudios Retrospectivos , Proteínas Supresoras de Tumor/metabolismo , Proteína Nuclear Ligada al Cromosoma X/genética , Adulto Joven
20.
Acta Neuropathol ; 136(2): 239-253, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29766299

RESUMEN

Diffuse leptomeningeal glioneuronal tumors (DLGNT) represent rare CNS neoplasms which have been included in the 2016 update of the WHO classification. The wide spectrum of histopathological and radiological features can make this enigmatic tumor entity difficult to diagnose. In recent years, large-scale genomic and epigenomic analyses have afforded insight into key genetic alterations occurring in multiple types of brain tumors and provide unbiased, complementary tools to improve diagnostic accuracy. Through genome-wide DNA methylation screening of > 25,000 tumors, we discovered a molecularly distinct class comprising 30 tumors, mostly diagnosed histologically as DLGNTs. Copy-number profiles derived from the methylation arrays revealed unifying characteristics, including loss of chromosomal arm 1p in all cases. Furthermore, this molecular DLGNT class can be subdivided into two subgroups [DLGNT methylation class (MC)-1 and DLGNT methylation class (MC)-2], with all DLGNT-MC-2 additionally displaying a gain of chromosomal arm 1q. Co-deletion of 1p/19q, commonly seen in IDH-mutant oligodendroglioma, was frequently observed in DLGNT, especially in DLGNT-MC-1 cases. Both subgroups also had recurrent genetic alterations leading to an aberrant MAPK/ERK pathway, with KIAA1549:BRAF fusion being the most frequent event. Other alterations included fusions of NTRK1/2/3 and TRIM33:RAF1, adding up to an MAPK/ERK pathway activation identified in 80% of cases. In the DLGNT-MC-1 group, age at diagnosis was significantly lower (median 5 vs 14 years, p < 0.01) and clinical course less aggressive (5-year OS 100, vs 43% in DLGNT-MC-2). Our study proposes an additional molecular layer to the current histopathological classification of DLGNT, of particular use for cases without typical morphological or radiological characteristics, such as diffuse growth and radiologic leptomeningeal dissemination. Recurrent 1p deletion and MAPK/ERK pathway activation represent diagnostic biomarkers and therapeutic targets, respectively-laying the foundation for future clinical trials with, e.g., MEK inhibitors that may improve the clinical outcome of patients with DLGNT.


Asunto(s)
Neoplasias Meníngeas/clasificación , Neoplasias Meníngeas/genética , Oligodendroglioma/clasificación , Oligodendroglioma/genética , Adolescente , Adulto , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Femenino , Pruebas Genéticas , Humanos , Estimación de Kaplan-Meier , Imagen por Resonancia Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/patología , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/patología , Transducción de Señal/genética , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA