RESUMEN
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.
Asunto(s)
Antiinfecciosos , Aterosclerosis , Dislipidemias , Ratones , Animales , Lisofosfatidilcolinas , Enterocitos/metabolismo , Lipopolisacáridos , Especies Reactivas de Oxígeno , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dieta Occidental , Inflamación/genética , Dislipidemias/metabolismo , Aterosclerosis/genéticaRESUMEN
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1-7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1-7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1-3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4-7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Asunto(s)
Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Dominio Catalítico , Nucleótidos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Transducción de Señal , Relación Estructura-ActividadRESUMEN
Autotaxin (ATX) is a secreted phosphodiesterase that produces the lipid mediator lysophosphatidic acid (LPA). LPA acts through specific guanine-nucleotide-binding protein (G protein)-coupled receptors to stimulate migration, proliferation, survival and other functions in many cell types. ATX is important in vivo for processes as diverse as vasculogenesis, lymphocyte trafficking and tumour progression. However, the inner workings of ATX have long been elusive, in terms of both its substrate specificity and how localized LPA signalling is achieved. Structural studies have shown how ATX recognizes its substrates and may interact with the cell surface to promote specificity in LPA signalling.
Asunto(s)
Complejos Multienzimáticos/metabolismo , Pirofosfatasas/metabolismo , Animales , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Especificidad por SustratoRESUMEN
GDE2 (also known as GDPD5) is a multispanning membrane phosphodiesterase with phospholipase D-like activity that cleaves select glycosylphosphatidylinositol (GPI)-anchored proteins and thereby promotes neuronal differentiation both in vitro and in vivo GDE2 is a prognostic marker in neuroblastoma, while loss of GDE2 leads to progressive neurodegeneration in mice; however, its regulation remains unclear. Here, we report that, in immature neuronal cells, GDE2 undergoes constitutive endocytosis and travels back along both fast and slow recycling routes. GDE2 trafficking is directed by C-terminal tail sequences that determine the ability of GDE2 to cleave GPI-anchored glypican-6 (GPC6) and induce a neuronal differentiation program. Specifically, we define a GDE2 truncation mutant that shows aberrant recycling and is dysfunctional, whereas a consecutive deletion results in cell-surface retention and gain of GDE2 function, thus uncovering distinctive regulatory sequences. Moreover, we identify a C-terminal leucine residue in a unique motif that is essential for GDE2 internalization. These findings establish a mechanistic link between GDE2 neuronal function and sequence-dependent trafficking, a crucial process gone awry in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.
Asunto(s)
Neuroblastoma , Fosfolipasas , Animales , Diferenciación Celular/genética , Glicosilfosfatidilinositoles/genética , Ratones , Hidrolasas Diéster Fosfóricas/genéticaRESUMEN
Autotaxin (ATX or ENPP2) is a secreted lysophospholipase D that produces lysophosphatidic acid (LPA), a pleiotropic lipid mediator acting on specific GPCRs. ATX and LPA have been implicated in key (patho)physiologic processes, including embryonic development, lymphocyte homing, inflammation, and cancer progression. Using LPA receptor knockout mice, we previously uncovered a role for LPA signaling in promoting colitis and colorectal cancer. Here, we examined the role of ATX in experimental colitis through inducible deletion of Enpp2 in adult mice. ATX expression was increased upon induction of colitis, whereas ATX deletion reduced the severity of inflammation in both acute and chronic colitis, accompanied by transient weight loss. ATX expression in lymphocytes was strongly reduced in Rag1-/- and µMT mice, suggesting B cells as a major ATX-producing source, which was validated by immunofluorescence and biochemical analyses. ATX secretion by B cells from control, but not Enpp2 knockout, mice led to ERK activation in colorectal cancer cells and promoted T cell migration. We conclude that ATX deletion suppresses experimental colitis and that B cells are a major source of ATX in the colon. Our study suggests that pharmacological inhibition of ATX could be a therapeutic strategy in colitis.-Lin, S., Haque, A., Raeman, R., Guo, L., He, P., Denning, T. L., El-Rayes, B., Moolenaar, W. H., Yun, C. C. Autotaxin determines colitis severity in mice and is secreted by B cells in the colon.
Asunto(s)
Linfocitos B/metabolismo , Colitis/metabolismo , Colon/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Células HCT116 , Humanos , Inflamación/metabolismo , Linfocitos/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with ß1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin-binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA-mDia2-regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Asunto(s)
Proteínas Portadoras/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Profilinas/metabolismo , Seudópodos/metabolismo , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Membrana Celular/metabolismo , Canales de Cloruro/química , Secuencia Conservada , Cristalografía por Rayos X , Activación Enzimática , Forminas , Células HeLa , Humanos , Integrinas/metabolismo , Modelos Moleculares , Profilinas/química , Unión Proteica , Conformación Proteica , Transporte de ProteínasRESUMEN
Cl- intracellular channels (CLICs) are a family of six evolutionary conserved cytosolic proteins that exist in both soluble and membrane-associated forms; however, their functions have long been elusive. Soluble CLICs adopt a glutathione S-transferase (GST)-fold, can induce ion currents in artificial membranes and show oxidoreductase activity in vitro, but there is no convincing evidence of CLICs having such activities in vivo. Recent studies have revealed a role for CLIC proteins in Rho-regulated cortical actin dynamics as well as vesicular trafficking and integrin recycling, the latter of which are under the control of Rab GTPases. In this Commentary, we discuss the emerging roles of CLIC proteins in these processes and the lessons learned from gene-targeting studies. We also highlight outstanding questions regarding the molecular function(s) of these important but still poorly understood proteins.
Asunto(s)
Canales de Cloruro/metabolismo , Espacio Intracelular/metabolismo , Animales , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Transporte de ProteínasRESUMEN
Invadosomes are actin-rich membrane protrusions that degrade the extracellular matrix to drive tumor cell invasion. Key players in invadosome formation are c-Src and Rho family GTPases. Invadosomes can reassemble into circular rosette-like superstructures, but the underlying signaling mechanisms remain obscure. Here we show that Src-induced invadosomes in human melanoma cells (A375M and MDA-MB-435) undergo rapid remodeling into dynamic extracellular matrix-degrading rosettes by distinct G protein-coupled receptor agonists, notably lysophosphatidic acid (LPA; acting through the LPA1 receptor) and endothelin. Agonist-induced rosette formation is blocked by pertussis toxin, dependent on PI3K activity and accompanied by localized production of phosphatidylinositol 3,4,5-trisphosphate, whereas MAPK and Ca(2+) signaling are dispensable. Using FRET-based biosensors, we show that LPA and endothelin transiently activate Cdc42 through Gi, concurrent with a biphasic decrease in Rac activity and differential effects on RhoA. Cdc42 activity is essential for rosette formation, whereas G12/13-mediated RhoA-ROCK signaling suppresses the remodeling process. Our results reveal a Gi-mediated Cdc42 signaling axis by which G protein-coupled receptors trigger invadosome remodeling, the degree of which is dictated by the Cdc42-RhoA activity balance.
Asunto(s)
Endotelinas/metabolismo , Lisofosfolípidos/metabolismo , Melanoma/metabolismo , Podosomas/metabolismo , Receptores del Ácido Lisofosfatídico/agonistas , Proteína de Unión al GTP cdc42/agonistas , Proteína de Unión al GTP rac1/metabolismo , Biomarcadores/metabolismo , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hidrólisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Melanoma/enzimología , Melanoma/patología , Microscopía Confocal , Microscopía Fluorescente , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Podosomas/enzimología , Podosomas/patología , Interferencia de ARN , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen de Lapso de Tiempo , Proteína de Unión al GTP cdc42/antagonistas & inhibidores , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/agonistas , Proteína de Unión al GTP rac1/antagonistas & inhibidores , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismoRESUMEN
Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to ß1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of ß1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of ß1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking.
Asunto(s)
Canales de Cloruro/metabolismo , Integrina beta1/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Endocitosis/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Receptores ErbB/metabolismo , Adhesiones Focales/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Lisofosfolípidos/farmacología , Transporte de Proteínas/efectos de los fármacos , Suero , Transducción de Señal/efectos de los fármacos , Proteínas de Unión al GTP rab/metabolismoRESUMEN
The autotaxin-lysophosphatidic acid (ATX-LPA) axis has been implicated in several disease conditions including inflammation, fibrosis and cancer. This makes ATX an attractive drug target and its inhibition may lead to useful therapeutic agents. Through a high throughput screen (HTS) we identified a series of small molecule inhibitors of ATX which have subsequently been optimized for potency, selectivity and developability properties. This has delivered drug-like compounds such as 9v (CRT0273750) which modulate LPA levels in plasma and are suitable for in vivo studies. X-ray crystallography has revealed that these compounds have an unexpected binding mode in that they do not interact with the active site zinc ions but instead occupy the hydrophobic LPC pocket extending from the active site of ATX together with occupying the LPA 'exit' channel.
Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lisofosfolipasa/antagonistas & inhibidores , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacocinética , Humanos , Lisofosfolipasa/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacologíaRESUMEN
Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by Autotaxin (Atx), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (Lpar1-6). Knockdown of Atx or LPA receptor 3 (Lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, whereas overexpression of lpar3 partially rescued those defects in both atx and lpar3 morphants. Similar defects were observed in embryos treated with the Atx inhibitor HA130 and the Lpar1-3 inhibitor Ki16425. Knockdown of either Atx or Lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of ß-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx/Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.
Asunto(s)
Tipificación del Cuerpo/genética , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores Purinérgicos P2/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Señalización del Calcio , Núcleo Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Isoxazoles/farmacología , Morfogénesis , Morfolinos/genética , Morfolinos/farmacología , Hidrolasas Diéster Fosfóricas/genética , Propionatos/farmacología , Receptores del Ácido Lisofosfatídico/genética , Receptores Purinérgicos P2/genética , Vía de Señalización Wnt , Pez Cebra/genética , Proteínas de Pez Cebra/genética , beta Catenina/metabolismoRESUMEN
Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase-2, is a secreted lysophospholipase D (lysoPLD) that hydrolyzes extracellular lysophospholipids into the lipid mediator lysophosphatidic acid (LPA), a ligand for specific G protein-coupled receptors. ATX-LPA signaling is essential for development and has been implicated in a great diversity of (patho)physiological processes, ranging from lymphocyte homing to tumor progression. Structural and functional studies have revealed what makes ATX a unique lysoPLD, and how secreted ATX binds to its target cells. The ATX catalytic domain shows a characteristic bimetallic active site followed by a shallow binding groove that can accommodate nucleotides as well as the glycerol moiety of lysophospholipids, and by a deep lipid-binding pocket. In addition, the catalytic domain has an open tunnel of unknown function adjacent to the active site. Here, we discuss our current understanding of ATX structure-function relationships and signaling mechanisms, and how ATX isoforms use distinct mechanisms to target LPA production to the plasma membrane, notably binding to integrins and heparan sulfate proteoglycans. We also briefly discuss the development of drug-like inhibitors of ATX.
Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Animales , Cristalografía por Rayos X , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/genética , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Dominios Proteicos , Relación Estructura-ActividadRESUMEN
Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), playing a key role in diverse physiological and pathological processes. ATX exists in distinct splice variants, but isoform-specific functions remain elusive. Here we characterize the ATXα isoform, which differs from the canonical form (ATXß) in having a 52-residue polybasic insertion of unknown function in the catalytic domain. We find that the ATXα insertion is susceptible to cleavage by extracellular furin-like endoproteases, but cleaved ATXα remains structurally and functionally intact due to strong interactions within the catalytic domain. Through ELISA and surface plasmon resonance assays, we show that ATXα binds specifically to heparin with high affinity (K(d) ~10(-8) M), whereas ATXß does not; furthermore, heparin moderately enhanced the lysophospholipase D activity of ATXα. We further show that ATXα, but not ATXß, binds abundantly to SKOV3 carcinoma cells. ATXα binding was abolished after treating the cells with heparinase III, but not after chondroitinase treatment. Thus, the ATXα insertion constitutes a cleavable heparin-binding domain that mediates interaction with heparan sulfate proteoglycans, thereby targeting LPA production to the plasma membrane.
Asunto(s)
Proteoglicanos de Heparán Sulfato/química , Heparina/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Movimiento Celular , Cristalografía por Rayos X/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Células HEK293 , Humanos , Cinética , Lípidos/química , Lisofosfolípidos/química , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de SeñalRESUMEN
Autotaxin (ATX) is a secreted lysophospholipase D that generates the multifunctional lipid mediator lysophosphatidic acid (LPA). LPA signals through six distinct G protein-coupled receptors, acting alone or in concert to activate multiple effector pathways. The ATX-LPA signaling axis is implicated in a remarkably wide variety of physiological and pathological processes and plays a vital role in embryonic development. Disruption of the ATX-encoding gene (Enpp2) in mice results in intrauterine death due to vascular defects in the extra-embryonic yolk sac and embryo proper. In addition, Enpp2 (-/-) embryos show impaired neural development. The observed angiogenic defects are attributable, at least in part, to loss of LPA signaling through the Gα(12/13)-linked RhoA-ROCK-actin remodeling pathway. Studies in zebrafish also have uncovered a dual role for ATX in both vascular and neural development; furthermore, they point to a key role for ATX-LPA signaling in the regulation of left-right asymmetry. Here we discuss our present understanding of the role of ATX-LPA signaling in vertebrate development. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Asunto(s)
Desarrollo Embrionario , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Tipificación del Cuerpo , Humanos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Lisoesfingolípidos/metabolismoRESUMEN
Secreted autotaxin (ATX) promotes tumor progression by producing the pleiotropic lipid mediator lysophosphatidic acid (LPA). In a recent Nature Cancer paper, Bhattacharyya et al. show that ATX/LPA signaling suppresses CCL11-driven infiltration of eosinophils into the pancreatic tumor microenvironment to facilitate tumor progression, thus revealing a new ATX-mediated immune escape mechanism and highlighting the antitumor potential of eosinophils.
Asunto(s)
Neoplasias , Escape del Tumor , Humanos , Eosinófilos , Microambiente TumoralRESUMEN
The bioactive phospholipid lysophosphatidic acid (LPA) stimulates cell proliferation, migration and survival by acting on its cognate G-protein-coupled receptors. Aberrant LPA production, receptor expression and signalling probably contribute to cancer initiation, progression and metastasis. The recent identification of ecto-enzymes that mediate the production and degradation of LPA, as well as the development of receptor-selective analogues, indicate mechanisms by which LPA production or action could be modulated for cancer therapy.
Asunto(s)
Lisofosfolípidos/fisiología , Neoplasias/etiología , Receptores Acoplados a Proteínas G , Biomarcadores de Tumor/análisis , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Lisofosfolípidos/análisis , Lisofosfolípidos/química , Neoplasias/diagnóstico , Receptores de Superficie Celular/metabolismo , Receptores del Ácido Lisofosfatídico , Transducción de SeñalRESUMEN
Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.
Asunto(s)
Ácidos Borónicos/metabolismo , Lisofosfolípidos/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Glicoproteínas/química , Humanos , Concentración 50 Inhibidora , Lípidos/química , Masculino , Ratones , Complejos Multienzimáticos/metabolismo , Fosfodiesterasa I/metabolismo , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas/metabolismo , Transducción de Señal , Tiazolidinedionas/químicaRESUMEN
Lysophospholipids are cell membrane-derived lipids that include both glycerophospholipids such as lysophosphatidic acid (LPA) and sphingoid lipids such as sphingosine 1-phosphate (S1P). These and related molecules can function in vertebrates as extracellular signals by binding and activating G protein-coupled receptors. There are currently five LPA receptors, along with a proposed sixth (LPA1-LPA6), and five S1P receptors (S1P1-S1P5). A remarkably diverse biology and pathophysiology has emerged since the last review, driven by cloned receptors and targeted gene deletion ("knockout") studies in mice, which implicate receptor-mediated lysophospholipid signaling in most organ systems and multiple disease processes. The entry of various lysophospholipid receptor modulatory compounds into humans through clinical trials is ongoing and may lead to new medicines that are based on this signaling system. This review incorporates IUPHAR Nomenclature Committee guidelines in updating the nomenclature for lysophospholipid receptors ( http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=36).
Asunto(s)
Receptores Lisofosfolípidos/clasificación , Terminología como Asunto , Animales , Guías como Asunto , Humanos , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/antagonistas & inhibidores , Receptores Lisofosfolípidos/fisiologíaRESUMEN
Autotaxin (ATX; ENPP2) produces the lipid mediator lysophosphatidic acid (LPA) that signals through disparate EDG (LPA1-3) and P2Y (LPA4-6) G protein-coupled receptors. ATX/LPA promotes several (patho)physiological processes, including in pulmonary fibrosis, thus serving as an attractive drug target. However, it remains unclear if clinical outcome depends on how different types of ATX inhibitors modulate the ATX/LPA signaling axis. Here, we show that the ATX "tunnel" is crucial for conferring key aspects of ATX/LPA signaling and dictates cellular responses independent of ATX catalytic activity, with a preference for activation of P2Y LPA receptors. The efficacy of the ATX/LPA signaling responses are abrogated more efficiently by tunnel-binding inhibitors, such as ziritaxestat (GLPG1690), compared with inhibitors that exclusively target the active site, as shown in primary lung fibroblasts and a murine model of radiation-induced pulmonary fibrosis. Our results uncover a receptor-selective signaling mechanism for ATX, implying clinical benefit for tunnel-targeting ATX inhibitors.