RESUMEN
OBJECTIVE: This study was conducted to investigate the effects of dietary detoxified Rhus verniciflua sap (RVS) on production performance, egg quality, lipid fractions of egg yolk, liver and serum, and the profile of cecal microflora in laying hens. METHODS: Two hundred 52-week-old Hy-Line Brown layers were randomly divided into 4 groups with 5 replicates per group (2 hens per cage, 5 cages per replicate) and were provided with one of 4 experimental diets containing 0%, 0.05%, 0.1%, or 0.2% RVS, for 6 weeks. Due to unequal intervals of RVS doses, the interactive matrix language procedure of the SAS program was used to correct the contrast coefficients of orthogonal polynomials. RESULTS: There were no differences in feed intake and egg weight among the groups. Egg production increased (linearly and quadratically, p<0.05) with increasing levels of RVS. Eggshell thickness increased (linear, p<0.05) as the level of RVS in diets increased. The levels of blood cholesterol and activities of glutamic-oxaloacetic transaminase and glutamic-pyruvic transaminase were not altered by dietary treatments. Increasing level of RVS increased (linear, p<0.05) the populations of cecal lactic acid bacteria. The content of yolk cholesterol decreased (linear, p< 0.05) with increasing levels of dietary RVS, although there were no significant differences in each lipid fraction of the liver. CONCLUSION: This study indicates that dietary RVS could improve laying performance and eggshell quality, and affect cecal lactic acid bacteria in a dose-dependent manner.
RESUMEN
This study was conducted to evaluate the effects of temperature-humidity index (THI) on the mortality and the panting rates in hens exposed to varying thermal environments. Hens were challenged with an acute elevation in THI in Experiment 1, where dry-bulb temperature and relative humidity were set at ~27°C and 56% at the beginning of the experiment and changed to 36°C and 45% at its conclusion, respectively. In Experiment 2, different groups of hens were exposed to a progressive increase in THI, with similar ranges to those used in the previous experiment. In Experiment 3, the hens used in Experiment 2 were again challenged by THI conditions, the intensity of which ranged between those used in the previous two experiments. In Experiment 4, panting rates were recorded under varying THI. In the last, plasma biochemical profiles were determined in blood taken from hens subjected to experimental conditions similar to those in Experiment 2. When THI was acutely elevated from 24.2° to 32.1°C within 1 h and then maintained over 4.5 h, no mortality was detected in the first hour, but exceeded 95% after 5 h, and reached 100% at 5.5 h. A gradual increase in THI to 31.2°C over 6 h did not result in mortality during the first 3 h. When THI was set below the conditions in Experiment 1 but above those in Experiment 2, mortality was 29% at 4 h, 75% at 5 h, and 79% at 8 h. However, no mortality was detected in their respective control groups. Panting was not observed under 25.3°C and was largely variable under 30°C. However, all hens exhibited panting exceeding 250 counts/min and 60% mortality at 34°C when heat stress continued for a duration of up to 280 min. In Experiment 5, high ambient THI resulted in significant reductions in plasma albumin, amylase and aspartate aminotransferase, compared with those in control group (P < 0.05). These results suggest that an acute elevation of THI has more severe effects on mortality in hens than gradual changes even when temperature and humidity are similar in both cases.
RESUMEN
The present study was conducted to evaluate the effects of dietary gamma-aminobutyric acid (GABA) in broiler chickens raised in high stocking density (HSD) on performance and physiological responses. A total of 900 male broiler chicks (Ross 308) at 1 d old were assigned in a 2 × 2 factorial arrangement to 4 treatments (10 replicates per treatment) with stocking density, 7.5 birds/m2 (low stocking density; LSD) or 15 birds/m2 (HSD), and dietary GABA, 0 or 100 mg/kg. Chickens raised in HSD exhibited a decrease in body weight gain in all phases (P < 0.05) and feed intake in starter and whole phases (P < 0.01), and an increase in feed conversion ratio in the finisher phase (P < 0.01) compared with LSD-raised chickens. However, dietary GABA did not affect growth performance nor interacted with stocking density on production variables. The HSD vs. LSD increased relative liver weight on d 35 whereas dietary GABA increased relative liver weight and decreased relative bursa weight on d 21. Both stocking density and dietary GABA affected yield and quality of breast and leg muscles. Dietary GABA increased (P < 0.05) width of tibia on d 35 and interacted (P = 0.054) with stocking density on breaking stocking density on d 35. The HSD vs. LSD group lowered (P < 0.05) feather coverage scores. Significant interaction between stocking density and GABA on surface temperature of shank on d 21 was noted (P = 0.024). Dietary GABA exhibited an opposite effect on the concentrations of cecal short-chain fatty acids depending on stocking density leading to a moderate to significant interaction. Stocking density decreased alpha-1-acid glycoprotein whereas dietary GABA decreased heterophil-to-lymphocyte ratio and corticosterone in blood or serum samples. Serum biochemical parameters were altered by stocking density or dietary GABA. It is concluded that dietary GABA alleviated stress indices including corticosterone and heterophil-to-lymphocyte ratio, but failed to reverse stocking density-induced growth depression.
RESUMEN
This study was conducted to investigate the dietary effect of conventional or lutein-fortified chlorella on milk production and lutein incorporation in milk. Fifteen Holstein cows in mid-lactation were used in a 3 × 3 Latin square design each with a 21-day period. Cows were top-dressed daily with 30 g of conventional or lutein-fortified chlorella for 3 weeks. Cows without chlorella served as the control. The feed intake and milk yield were not affected by dietary treatments. The concentrations of milk protein and solids non-fat in groups fed diets containing both conventional and lutein-fortified chlorella were significantly higher than those of the control group (P < 0.001). There was no significant difference in content of milk fat among groups. The levels of plasma glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, interferon-gamma and interleukin-2 were not influenced by the dietary treatments. Lutein content in milk was significantly increased in groups fed lutein-fortified chlorella as compared with those of conventional chlorella and control, respectively (P < 0.01). These results imply that conventional and lutein-fortified chlorella has positive effects on milk components and the use of lutein-fortified chlorella in a dairy diet is effective in the production of milk enriched with lutein.